IEEE Trans Med Imaging. 2023 Dec;42(12):3738-3751. doi: 10.1109/TMI.2023.3306105. Epub 2023 Nov 30.
Medical image segmentation methods normally perform poorly when there is a domain shift between training and testing data. Unsupervised Domain Adaptation (UDA) addresses the domain shift problem by training the model using both labeled data from the source domain and unlabeled data from the target domain. Source-Free UDA (SFUDA) was recently proposed for UDA without requiring the source data during the adaptation, due to data privacy or data transmission issues, which normally adapts the pre-trained deep model in the testing stage. However, in real clinical scenarios of medical image segmentation, the trained model is normally frozen in the testing stage. In this paper, we propose Fourier Visual Prompting (FVP) for SFUDA of medical image segmentation. Inspired by prompting learning in natural language processing, FVP steers the frozen pre-trained model to perform well in the target domain by adding a visual prompt to the input target data. In FVP, the visual prompt is parameterized using only a small amount of low-frequency learnable parameters in the input frequency space, and is learned by minimizing the segmentation loss between the predicted segmentation of the prompted target image and reliable pseudo segmentation label of the target image under the frozen model. To our knowledge, FVP is the first work to apply visual prompts to SFUDA for medical image segmentation. The proposed FVP is validated using three public datasets, and experiments demonstrate that FVP yields better segmentation results, compared with various existing methods.
医学图像分割方法在训练数据和测试数据之间存在域转移时通常表现不佳。无监督域自适应 (UDA) 通过使用源域的标记数据和目标域的未标记数据来训练模型来解决域转移问题。由于数据隐私或数据传输问题,最近提出了无源 UDA (SFUDA),在适应过程中不需要源数据,这通常在测试阶段适应预先训练的深度模型。然而,在医学图像分割的实际临床场景中,训练好的模型通常在测试阶段被冻结。在本文中,我们提出了用于医学图像分割的无监督域自适应的傅里叶视觉提示 (FVP)。受自然语言处理中提示学习的启发,FVP 通过向输入的目标数据添加视觉提示,引导冻结的预训练模型在目标域中表现良好。在 FVP 中,视觉提示仅使用输入频率空间中的少量低频可学习参数进行参数化,并通过最小化提示目标图像的预测分割与冻结模型下目标图像的可靠伪分割标签之间的分割损失来学习。据我们所知,FVP 是第一个将视觉提示应用于医学图像分割的无监督域自适应的工作。所提出的 FVP 使用三个公共数据集进行了验证,实验表明,与各种现有方法相比,FVP 产生了更好的分割结果。