Suppr超能文献

用于胸部X光片肋骨骨折识别的深度卷积神经网络。

Deep convolutional neural network for rib fracture recognition on chest radiographs.

作者信息

Huang Shu-Tien, Liu Liong-Rung, Chiu Hung-Wen, Huang Ming-Yuan, Tsai Ming-Feng

机构信息

Department of Emergency Medicine, Mackay Memorial Hospital, Taipei, Taiwan.

Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.

出版信息

Front Med (Lausanne). 2023 Aug 1;10:1178798. doi: 10.3389/fmed.2023.1178798. eCollection 2023.

Abstract

INTRODUCTION

Rib fractures are a prevalent injury among trauma patients, and accurate and timely diagnosis is crucial to mitigate associated risks. Unfortunately, missed rib fractures are common, leading to heightened morbidity and mortality rates. While more sensitive imaging modalities exist, their practicality is limited due to cost and radiation exposure. Point of care ultrasound offers an alternative but has drawbacks in terms of procedural time and operator expertise. Therefore, this study aims to explore the potential of deep convolutional neural networks (DCNNs) in identifying rib fractures on chest radiographs.

METHODS

We assembled a comprehensive retrospective dataset of chest radiographs with formal image reports documenting rib fractures from a single medical center over the last five years. The DCNN models were trained using 2000 region-of-interest (ROI) slices for each category, which included fractured ribs, non-fractured ribs, and background regions. To optimize training of the deep learning models (DLMs), the images were segmented into pixel dimensions of 128 × 128.

RESULTS

The trained DCNN models demonstrated remarkable validation accuracies. Specifically, AlexNet achieved 92.6%, GoogLeNet achieved 92.2%, EfficientNetb3 achieved 92.3%, DenseNet201 achieved 92.4%, and MobileNetV2 achieved 91.2%.

DISCUSSION

By integrating DCNN models capable of rib fracture recognition into clinical decision support systems, the incidence of missed rib fracture diagnoses can be significantly reduced, resulting in tangible decreases in morbidity and mortality rates among trauma patients. This innovative approach holds the potential to revolutionize the diagnosis and treatment of chest trauma, ultimately leading to improved clinical outcomes for individuals affected by these injuries. The utilization of DCNNs in rib fracture detection on chest radiographs addresses the limitations of other imaging modalities, offering a promising and practical solution to improve patient care and management.

摘要

引言

肋骨骨折是创伤患者中常见的损伤,准确及时的诊断对于降低相关风险至关重要。不幸的是,漏诊肋骨骨折很常见,会导致发病率和死亡率升高。虽然存在更敏感的成像方式,但由于成本和辐射暴露,其实用性有限。床旁超声提供了一种替代方法,但在操作时间和操作者专业知识方面存在缺点。因此,本研究旨在探索深度卷积神经网络(DCNN)在胸部X光片上识别肋骨骨折的潜力。

方法

我们收集了一个全面的胸部X光片回顾性数据集,这些X光片带有过去五年来自单个医疗中心的记录肋骨骨折的正式影像报告。DCNN模型使用每个类别2000个感兴趣区域(ROI)切片进行训练,这些类别包括骨折肋骨、未骨折肋骨和背景区域。为了优化深度学习模型(DLM)的训练,将图像分割为128×128像素尺寸。

结果

经过训练的DCNN模型表现出显著的验证准确率。具体而言,AlexNet达到92.6%,GoogLeNet达到92.2%,EfficientNetb3达到92.3%,DenseNet201达到92.4%,MobileNetV2达到91.2%。

讨论

通过将能够识别肋骨骨折的DCNN模型集成到临床决策支持系统中,可以显著降低漏诊肋骨骨折诊断的发生率,从而切实降低创伤患者的发病率和死亡率。这种创新方法有可能彻底改变胸部创伤的诊断和治疗,最终改善受这些损伤影响个体的临床结局。在胸部X光片上利用DCNN进行肋骨骨折检测解决了其他成像方式的局限性,为改善患者护理和管理提供了一种有前景且实用的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7ae/10427862/5cf0781f0d01/fmed-10-1178798-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验