Suppr超能文献

利用谷歌地球引擎对山区地表温度变化进行时间序列分析。

Time-series analyses of land surface temperature changes with Google Earth Engine in a mountainous region.

作者信息

Rodrigues de Almeida Cátia, Garcia Nuno, Campos João C, Alírio João, Arenas-Castro Salvador, Gonçalves Artur, Sillero Neftalí, Teodoro Ana Cláudia

机构信息

Department of Geosciences, Environment and Land Planning, University of Porto, Rua Campo Alegre, 687, 4169-007, Porto, Portugal.

Earth Sciences Institute (ICT), Pole of the FCUP, University of Porto, 4169-007, Porto, Portugal.

出版信息

Heliyon. 2023 Aug 1;9(8):e18846. doi: 10.1016/j.heliyon.2023.e18846. eCollection 2023 Aug.

Abstract

Studying changes in temperature is fundamental for understanding its interactions with the environment and biodiversity. However, studies in mountainous areas are few, due to their complex formation and the difficulty of obtaining local data. We analysed changes in temperature over time in Montesinho Natural Park (MNP) (Bragança, Portugal), an important conservation area due to its high level of biodiversity. Specifically, we aimed to analyse: i) whether temperature increased in MNP over time, ii) what environmental factors influence the Land Surface Temperature (LST), and iii) whether vegetation is related to changes in temperature. We used annual summer and winter mean data acquired from the Moderate-Resolution Imaging Spectroradiometer (MODIS) datasets/products (e.g. LST, gathered at four different times: 11am, 1pm, 10pm and 2am, Enhance vegetation index - EVI, and Evapotranspiration - ET), available on the cloud-based platform Google Earth Engine between 2003 and 2021). We analysed the dynamics of the temporal trend patterns between the LST and local thermal data (from a weather station) by correlations; the trends in LST over time with the Mann-Kendall trend test; and the stability of hot spots and cold spots of LST with Local Statistics of Spatial Association (LISA) tests. The temporal trend patterns between LST and Air Temperature (T) data were very similar (ρ > 0.7). The temperature in the MNP remained stable over time during summer but increased during winter nights. The biophysical indices were strongly correlated with the summer LST at 11am and 1pm. The LISA results identified hot and cold zones that remained stable over time. The remote-sensed data proved to be efficient in measuring changes in temperature over time.

摘要

研究温度变化对于理解其与环境及生物多样性的相互作用至关重要。然而,由于山区地形复杂且获取当地数据困难,相关研究较少。我们分析了葡萄牙布拉干萨蒙特西尼奥自然公园(MNP)随时间的温度变化,该公园因其高度的生物多样性而成为重要的保护区。具体而言,我们旨在分析:i)MNP的温度是否随时间升高;ii)哪些环境因素影响地表温度(LST);iii)植被是否与温度变化有关。我们使用了从中等分辨率成像光谱仪(MODIS)数据集/产品获取的年度夏季和冬季平均数据(例如,在四个不同时间收集的LST:上午11点、下午1点、晚上10点和凌晨2点,增强植被指数 - EVI,以及蒸散 - ET),这些数据可在2003年至2021年基于云的谷歌地球引擎平台上获取。我们通过相关性分析了LST与当地热数据(来自气象站)之间时间趋势模式的动态变化;使用曼 - 肯德尔趋势检验分析LST随时间的趋势;并通过局部空间关联统计(LISA)检验分析LST热点和冷点的稳定性。LST与气温(T)数据之间的时间趋势模式非常相似(ρ > 0.7)。MNP的温度在夏季随时间保持稳定,但在冬季夜间升高。生物物理指数与上午11点和下午1点的夏季LST高度相关。LISA结果确定了随时间保持稳定的热区和冷区。事实证明,遥感数据在测量随时间的温度变化方面非常有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19c2/10428060/4be639c317aa/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验