Center of Excellence in Signal and Image Processing, Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded, Maharashtra, India.
Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA.
Sci Rep. 2023 Aug 18;13(1):13467. doi: 10.1038/s41598-023-39648-8.
Skin cancer is a serious condition that requires accurate diagnosis and treatment. One way to assist clinicians in this task is using computer-aided diagnosis tools that automatically segment skin lesions from dermoscopic images. We propose a novel adversarial learning-based framework called Efficient-GAN (EGAN) that uses an unsupervised generative network to generate accurate lesion masks. It consists of a generator module with a top-down squeeze excitation-based compound scaled path, an asymmetric lateral connection-based bottom-up path, and a discriminator module that distinguishes between original and synthetic masks. A morphology-based smoothing loss is also implemented to encourage the network to create smooth semantic boundaries of lesions. The framework is evaluated on the International Skin Imaging Collaboration Lesion Dataset. It outperforms the current state-of-the-art skin lesion segmentation approaches with a Dice coefficient, Jaccard similarity, and accuracy of 90.1%, 83.6%, and 94.5%, respectively. We also design a lightweight segmentation framework called Mobile-GAN (MGAN) that achieves comparable performance as EGAN but with an order of magnitude lower number of training parameters, thus resulting in faster inference times for low compute resource settings.
皮肤癌是一种严重的疾病,需要准确的诊断和治疗。一种帮助临床医生完成这项任务的方法是使用计算机辅助诊断工具,这些工具可以自动从皮肤镜图像中分割皮肤病变。我们提出了一种名为 Efficient-GAN(EGAN)的新型对抗学习框架,该框架使用无监督生成网络生成准确的病变掩模。它由一个具有自上而下挤压激励复合缩放路径的生成器模块、一个基于非对称横向连接的自下而上路径和一个区分原始和合成掩模的判别器模块组成。还实现了基于形态学的平滑损失,以鼓励网络创建病变的平滑语义边界。该框架在国际皮肤成像协作病变数据集上进行了评估。它在骰子系数、Jaccard 相似性和准确性方面的表现优于当前最先进的皮肤病变分割方法,分别为 90.1%、83.6%和 94.5%。我们还设计了一个名为 Mobile-GAN(MGAN)的轻量级分割框架,它可以实现与 EGAN 相当的性能,但训练参数数量要低一个数量级,因此在计算资源较低的设置下可以实现更快的推理时间。