Suppr超能文献

用于评估斑秃患者脱发程度的临床适用深度学习框架。

Clinically Applicable Deep Learning Framework for Measurement of the Extent of Hair Loss in Patients With Alopecia Areata.

机构信息

Department of Dermatology and Preventive Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.

Department of Dermatology and Institute of Hair and Cosmetic Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.

出版信息

JAMA Dermatol. 2020 Sep 1;156(9):1018-1020. doi: 10.1001/jamadermatol.2020.2188.

Abstract

This study aims to develop a deep learning framework to determine the Severity of Alopecia Tool (SALT) score for measurement of hair loss in patients with alopecia areata.

摘要

本研究旨在开发一种深度学习框架,以确定脱发严重程度评估工具(SALT)评分,用于评估斑秃患者的脱发程度。

相似文献

5
Pediatric severity of alopecia tool.儿童脱发严重程度评估工具
Pediatr Dermatol. 2018 Jan;35(1):e68-e69. doi: 10.1111/pde.13327. Epub 2017 Nov 6.
9
Lupus panniculitis clinically simulating alopecia areata.临床模拟斑秃的狼疮性脂膜炎。
Australas J Dermatol. 2002 Aug;43(3):221-3. doi: 10.1046/j.1440-0960.2002.00601.x.

引用本文的文献

本文引用的文献

6
Objective outcome measures: Collecting meaningful data on alopecia areata.客观结果测量:收集斑秃有意义的数据。
J Am Acad Dermatol. 2018 Sep;79(3):470-478.e3. doi: 10.1016/j.jaad.2017.10.048. Epub 2017 Nov 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验