Aryal Jagannath, Sitaula Chiranjibi, Frery Alejandro C
Earth Observation and AI Research Group, Department of Infrastructure Engineering, The University of Melbourne, Melbourne, 3053, Australia.
School of Mathematics and Statistics, Victoria University of Wellington, Wellington, 6012, New Zealand.
Sci Rep. 2023 Aug 19;13(1):13510. doi: 10.1038/s41598-023-40564-0.
Accurate spatial information on Land use and land cover (LULC) plays a crucial role in city planning. A widely used method of obtaining accurate LULC maps is a classification of the categories, which is one of the challenging problems. Attempts have been made considering spectral (Sp), statistical (St), and index-based (Ind) features in developing LULC maps for city planning. However, no work has been reported to automate LULC performance modeling for their robustness with machine learning (ML) algorithms. In this paper, we design seven schemes and automate the LULC performance modeling with six ML algorithms-Random Forest, Support Vector Machine with Linear kernel, Support Vector Machine with Radial basis function kernel, Artificial Neural Network, Naïve Bayes, and Generalised Linear Model for the city of Melbourne, Australia on Sentinel-2A images. Experimental results show that the Random Forest outperforms remaining ML algorithms in the classification accuracy (0.99) on all schemes. The robustness and statistical analysis of the ML algorithms (for example, Random Forest imparts over 0.99 F1-score for all five categories and p value [Formula: see text] 0.05 from Wilcoxon ranked test over accuracy measures) against varying training splits demonstrate the effectiveness of the proposed schemes. Thus, providing a robust measure of LULC maps in city planning.
准确的土地利用和土地覆盖(LULC)空间信息在城市规划中起着至关重要的作用。一种广泛使用的获取准确LULC地图的方法是对类别进行分类,这是一个具有挑战性的问题之一。在为城市规划开发LULC地图时,人们已经尝试考虑光谱(Sp)、统计(St)和基于指数(Ind)的特征。然而,尚未有工作报道利用机器学习(ML)算法对LULC性能建模进行自动化以提高其稳健性。在本文中,我们设计了七种方案,并利用六种ML算法——随机森林、线性核支持向量机、径向基函数核支持向量机、人工神经网络、朴素贝叶斯和广义线性模型,对澳大利亚墨尔本的哨兵 - 2A图像进行LULC性能建模自动化。实验结果表明,在所有方案中,随机森林在分类精度(0.99)方面优于其余ML算法。针对不同训练分割的ML算法的稳健性和统计分析(例如,随机森林在所有五个类别上的F1分数超过0.99,并且在准确性度量上通过威尔科克森秩和检验得到的p值[公式:见正文] < 0.05)证明了所提方案的有效性。因此,为城市规划中的LULC地图提供了一种稳健的度量方法。