Suppr超能文献

WarpPINN:基于物理信息神经网络的电影磁共振图像配准。

WarpPINN: Cine-MR image registration with physics-informed neural networks.

机构信息

Department of Mathematical Sciences, University of Bath, Bath, UK.

School of Electrical Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.

出版信息

Med Image Anal. 2023 Oct;89:102925. doi: 10.1016/j.media.2023.102925. Epub 2023 Aug 9.

Abstract

The diagnosis of heart failure usually includes a global functional assessment, such as ejection fraction measured by magnetic resonance imaging. However, these metrics have low discriminate power to distinguish different cardiomyopathies, which may not affect the global function of the heart. Quantifying local deformations in the form of cardiac strain can provide helpful information, but it remains a challenge. In this work, we introduce WarpPINN, a physics-informed neural network to perform image registration to obtain local metrics of heart deformation. We apply this method to cine magnetic resonance images to estimate the motion during the cardiac cycle. We inform our neural network of the near-incompressibility of cardiac tissue by penalizing the Jacobian of the deformation field. The loss function has two components: an intensity-based similarity term between the reference and the warped template images, and a regularizer that represents the hyperelastic behavior of the tissue. The architecture of the neural network allows us to easily compute the strain via automatic differentiation to assess cardiac activity. We use Fourier feature mappings to overcome the spectral bias of neural networks, allowing us to capture discontinuities in the strain field. The algorithm is tested on synthetic examples and on a cine SSFP MRI benchmark of 15 healthy volunteers, where it is trained to learn the deformation mapping of each case. We outperform current methodologies in landmark tracking and provide physiological strain estimations in the radial and circumferential directions. WarpPINN provides precise measurements of local cardiac deformations that can be used for a better diagnosis of heart failure and can be used for general image registration tasks. Source code is available at https://github.com/fsahli/WarpPINN.

摘要

心力衰竭的诊断通常包括整体功能评估,例如通过磁共振成像测量射血分数。然而,这些指标的区分能力较低,无法区分不同的心肌病,而这些心肌病可能不会影响心脏的整体功能。以心脏应变的形式量化局部变形可以提供有用的信息,但这仍然是一个挑战。在这项工作中,我们引入了 WarpPINN,这是一种物理信息神经网络,用于执行图像配准以获得心脏变形的局部度量。我们将这种方法应用于电影磁共振图像,以估计心脏周期期间的运动。我们通过惩罚变形场的雅可比来告知神经网络心脏组织的近不可压缩性。损失函数有两个分量:参考图像和变形模板图像之间基于强度的相似性项,以及表示组织超弹性行为的正则化项。神经网络的架构允许我们通过自动微分轻松计算应变,以评估心脏活动。我们使用傅里叶特征映射来克服神经网络的频谱偏差,从而能够捕获应变场中的不连续性。该算法在合成示例和 15 名健康志愿者的电影 SSFP MRI 基准上进行了测试,在该基准上,它被训练来学习每个病例的变形映射。我们在标志点跟踪方面优于当前的方法,并提供了径向和周向方向的生理应变估计。WarpPINN 提供了精确的局部心脏变形测量,可用于更好地诊断心力衰竭,并可用于一般的图像配准任务。源代码可在 https://github.com/fsahli/WarpPINN 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验