Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA; Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden.
J Electrocardiol. 2023 Nov-Dec;81:286-291. doi: 10.1016/j.jelectrocard.2023.07.002. Epub 2023 Jul 9.
A 12‑lead electrocardiography (ECG)-based convolutional neural network (CNN) model can detect hypertrophic cardiomyopathy (HCM). However, since these models do not rely on discrete measurements as inputs, it is not apparent what drives their performance. We hypothesized that saliency maps could be used to visually identify ECG segments that contribute to a CNN's robust classification of HCM.
We derived a new one‑lead (lead I) CNN model based on median beats using the same methodology and cohort used for the original 12‑lead CNN model (3047 patients with HCM, and 63,926 sex- and age-matched non-HCM controls). One‑lead, median-beat saliency maps were generated and visually evaluated in an independent cohort of 100 patients with a diagnosis of HCM and a high artificial intelligence (AI)-ECG-HCM probability score to determine which ECG segments contributed to the model's detection of HCM.
The one‑lead, median-beat CNN had an AUC of 0.90 (95% CI 0.89-0.92) for HCM detection, similar to the original 12‑lead ECG model. In the independent HCM cohort (n = 100), saliency maps highlighted the ST-T segment in 92 ECGs, the atrial depolarization segment in 12 ECGs, and the QRS complex in 5 ECGs.
Saliency maps of a one‑lead, median-beat-based CNN model identified perturbations in ventricular repolarization as the main region of interest in detecting HCM.
基于 12 导联心电图(ECG)的卷积神经网络(CNN)模型可用于检测肥厚型心肌病(HCM)。然而,由于这些模型不依赖离散测量作为输入,因此不清楚是什么驱动了它们的性能。我们假设显着性映射可用于直观地识别对 CNN 稳健分类 HCM 有贡献的 ECG 段。
我们使用与原始 12 导联 CNN 模型相同的方法和队列,从平均心搏中推导出一种新的单导联(导联 I)CNN 模型(3047 例 HCM 患者和 63926 例性别和年龄匹配的非 HCM 对照组)。生成单导联、平均心搏显着性映射,并在 100 例 HCM 诊断和高人工智能(AI)-ECG-HCM 概率评分的独立患者队列中进行视觉评估,以确定哪些 ECG 段有助于模型检测 HCM。
单导联、平均心搏 CNN 对 HCM 的检测具有 0.90(95%置信区间 0.89-0.92)的 AUC,与原始 12 导联 ECG 模型相似。在独立的 HCM 队列(n=100)中,显着性映射突出了 92 个 ECG 中的 ST-T 段、12 个 ECG 中的心房去极化段和 5 个 ECG 中的 QRS 复合体。
基于单导联、平均心搏的 CNN 模型的显着性映射确定了心室复极中的干扰是检测 HCM 的主要关注点。