Gliner Vadim, Levy Idan, Tsutsui Kenta, Acha Moshe Rav, Schliamser Jorge, Schuster Assaf, Yaniv Yael
Computer Science Department, Technion-IIT, Haifa, Israel.
Saitama Medical University International Medical Center, Saitama, Japan.
NPJ Digit Med. 2025 Feb 17;8(1):109. doi: 10.1038/s41746-025-01467-8.
Despite the high accuracy of AI-based automated analysis of 12-lead ECG images for classification of cardiac conditions, clinical integration of such tools is hindered by limited interpretability of model recommendations. We aim to demonstrate the feasibility of a generic, clinical resource interpretability tool for AI models analyzing digitized 12-lead ECG images. To this end, we utilized the sensitivity of the Jacobian matrix to compute the gradient of the classifier for each pixel and provide medical relevance interpretability. Our methodology was validated using a dataset consisting of 79,226 labeled scanned ECG images, 11,316 unlabeled and 1807 labeled images obtained via mobile camera in clinical settings. The tool provided interpretability for both morphological and arrhythmogenic conditions, highlighting features in terms understandable to physician. It also emphasized significant signal features indicating the absence of certain cardiac conditions. High correlation was achieved between our method of interpretability and gold standard interpretations of 3 electrophysiologists.
尽管基于人工智能的12导联心电图图像自动分析在心脏病分类方面具有很高的准确性,但此类工具的临床应用因模型建议的可解释性有限而受阻。我们旨在证明一种通用的临床资源可解释性工具对于分析数字化12导联心电图图像的人工智能模型的可行性。为此,我们利用雅可比矩阵的敏感性来计算分类器对每个像素的梯度,并提供医学相关性解释。我们的方法使用一个数据集进行了验证,该数据集包括79226张标记的扫描心电图图像、11316张未标记图像以及在临床环境中通过移动相机获得的1807张标记图像。该工具为形态学和致心律失常情况均提供了解释性,以医生易于理解的方式突出显示特征。它还强调了表明不存在某些心脏病情况的重要信号特征。我们的可解释性方法与3位电生理学家的金标准解释之间实现了高度相关。
NPJ Digit Med. 2025-2-17
Comput Methods Programs Biomed. 2022-6
Front Physiol. 2022-7-22
Sci Rep. 2025-4-18
Mayo Clin Proc Digit Health. 2023-12-18
Cardiovasc Digit Health J. 2021-5-5
Diagnostics (Basel). 2025-7-22
BioData Min. 2025-7-11
Diagnostics (Basel). 2022-12-29
Nat Commun. 2022-3-24
Arrhythm Electrophysiol Rev. 2021-10
Proc Natl Acad Sci U S A. 2021-6-15
Comput Biol Med. 2021-6
IEEE J Biomed Health Inform. 2021-5
Nat Commun. 2020-4-9