文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于心电图分类的人工智能模型的临床意义可解释性。

Clinically meaningful interpretability of an AI model for ECG classification.

作者信息

Gliner Vadim, Levy Idan, Tsutsui Kenta, Acha Moshe Rav, Schliamser Jorge, Schuster Assaf, Yaniv Yael

机构信息

Computer Science Department, Technion-IIT, Haifa, Israel.

Saitama Medical University International Medical Center, Saitama, Japan.

出版信息

NPJ Digit Med. 2025 Feb 17;8(1):109. doi: 10.1038/s41746-025-01467-8.


DOI:10.1038/s41746-025-01467-8
PMID:39962214
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11833077/
Abstract

Despite the high accuracy of AI-based automated analysis of 12-lead ECG images for classification of cardiac conditions, clinical integration of such tools is hindered by limited interpretability of model recommendations. We aim to demonstrate the feasibility of a generic, clinical resource interpretability tool for AI models analyzing digitized 12-lead ECG images. To this end, we utilized the sensitivity of the Jacobian matrix to compute the gradient of the classifier for each pixel and provide medical relevance interpretability. Our methodology was validated using a dataset consisting of 79,226 labeled scanned ECG images, 11,316 unlabeled and 1807 labeled images obtained via mobile camera in clinical settings. The tool provided interpretability for both morphological and arrhythmogenic conditions, highlighting features in terms understandable to physician. It also emphasized significant signal features indicating the absence of certain cardiac conditions. High correlation was achieved between our method of interpretability and gold standard interpretations of 3 electrophysiologists.

摘要

尽管基于人工智能的12导联心电图图像自动分析在心脏病分类方面具有很高的准确性,但此类工具的临床应用因模型建议的可解释性有限而受阻。我们旨在证明一种通用的临床资源可解释性工具对于分析数字化12导联心电图图像的人工智能模型的可行性。为此,我们利用雅可比矩阵的敏感性来计算分类器对每个像素的梯度,并提供医学相关性解释。我们的方法使用一个数据集进行了验证,该数据集包括79226张标记的扫描心电图图像、11316张未标记图像以及在临床环境中通过移动相机获得的1807张标记图像。该工具为形态学和致心律失常情况均提供了解释性,以医生易于理解的方式突出显示特征。它还强调了表明不存在某些心脏病情况的重要信号特征。我们的可解释性方法与3位电生理学家的金标准解释之间实现了高度相关。

相似文献

[1]
Clinically meaningful interpretability of an AI model for ECG classification.

NPJ Digit Med. 2025-2-17

[2]
A visually interpretable detection method combines 3-D ECG with a multi-VGG neural network for myocardial infarction identification.

Comput Methods Programs Biomed. 2022-6

[3]
Automatic classification of healthy and disease conditions from images or digital standard 12-lead electrocardiograms.

Sci Rep. 2020-10-1

[4]
Cardiac Arrhythmia classification based on 3D recurrence plot analysis and deep learning.

Front Physiol. 2022-7-22

[5]
Automated Detection of Acute Myocardial Infarction Using Asynchronous Electrocardiogram Signals-Preview of Implementing Artificial Intelligence With Multichannel Electrocardiographs Obtained From Smartwatches: Retrospective Study.

J Med Internet Res. 2021-9-10

[6]
AI analysis for ejection fraction estimation from 12-lead ECG.

Sci Rep. 2025-4-18

[7]
Artificial Intelligence-Based Automated Interpretation of Images of Electrocardiograms: Development and Multinational Validation of ECG-GPT.

medRxiv. 2025-4-22

[8]
Artificial Intelligence in Diagnosis of Long QT Syndrome: A Review of Current State, Challenges, and Future Perspectives.

Mayo Clin Proc Digit Health. 2023-12-18

[9]
Automatic Mobile Health Arrhythmia Monitoring for the Detection of Atrial Fibrillation: Prospective Feasibility, Accuracy, and User Experience Study.

JMIR Mhealth Uhealth. 2021-10-22

[10]
An artificial intelligence-enabled ECG algorithm for comprehensive ECG interpretation: Can it pass the 'Turing test'?

Cardiovasc Digit Health J. 2021-5-5

引用本文的文献

[1]
Transforming Population Health Screening for Atherosclerotic Cardiovascular Disease with AI-Enhanced ECG Analytics: Opportunities and Challenges.

Curr Atheroscler Rep. 2025-9-1

[2]
Transparent and Robust Artificial Intelligence-Driven Electrocardiogram Model for Left Ventricular Systolic Dysfunction.

Diagnostics (Basel). 2025-7-22

[3]
The ethics of data mining in healthcare: challenges, frameworks, and future directions.

BioData Min. 2025-7-11

[4]
Electrocardiographic parameter profiles for differentiating hypertrophic cardiomyopathy stages.

J Arrhythm. 2025-5-12

本文引用的文献

[1]
Using domain adaptation for classification of healthy and disease conditions from mobile-captured images of standard 12-lead electrocardiograms.

Sci Rep. 2023-8-28

[2]
Saliency maps provide insights into artificial intelligence-based electrocardiography models for detecting hypertrophic cardiomyopathy.

J Electrocardiol. 2023

[3]
Diagnostic accuracy of the PMcardio smartphone application for artificial intelligence-based interpretation of electrocardiograms in primary care (AMSTELHEART-1).

Cardiovasc Digit Health J. 2023-4-5

[4]
Interpretable Machine Learning Techniques in ECG-Based Heart Disease Classification: A Systematic Review.

Diagnostics (Basel). 2022-12-29

[5]
Automated multilabel diagnosis on electrocardiographic images and signals.

Nat Commun. 2022-3-24

[6]
ECG and Pacing Criteria for Differentiating Conduction System Pacing from Myocardial Pacing.

Arrhythm Electrophysiol Rev. 2021-10

[7]
Meeting the unmet needs of clinicians from AI systems showcased for cardiology with deep-learning-based ECG analysis.

Proc Natl Acad Sci U S A. 2021-6-15

[8]
Interpretable heartbeat classification using local model-agnostic explanations on ECGs.

Comput Biol Med. 2021-6

[9]
Deep Learning for ECG Analysis: Benchmarks and Insights from PTB-XL.

IEEE J Biomed Health Inform. 2021-5

[10]
Automatic diagnosis of the 12-lead ECG using a deep neural network.

Nat Commun. 2020-4-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索