文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Identifying Hypertrophic or Dilated Cardiomyopathy: Development and Validation of a Fine-Tuned ResNet50 Model Based on Electrocardiogram Image.

作者信息

Xu Jiayu, Chen Bo, Liu Weiyang, Dong Wei, Zhuang Yan, Zhang Peifang, He Kunlun

机构信息

Graduate School, Chinese People's Liberation Army General Hospital, Beijing 100853, China.

Medical Innovation Research Division, Chinese People's Liberation Army General Hospital, Beijing 100853, China.

出版信息

Bioengineering (Basel). 2025 Feb 28;12(3):250. doi: 10.3390/bioengineering12030250.


DOI:10.3390/bioengineering12030250
PMID:40150714
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11939401/
Abstract

There is no established detecting tool for hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). This study aimed to develop a deep-learning-based model for identifying HCM and DCM using standard 12-lead electrocardiogram (ECG) images. We obtained a cohort of patients with HCM (171 ECG images) or DCM (364 ECG images), confirmed by cardiovascular magnetic resonance (CMR) examinations, who underwent both ECG and CMR within 30 days at our institution. Age- and sex-matched healthy controls (2314 ECG images) were selected from our Health Check Center. A total of 2849 ECG images were processed via a fine-tuned ResNet50 architecture, with stratified five-fold cross-validation for model training, validation, and testing. The proposed model demonstrated strong performance in distinguishing DCM, achieving an area under the receiver operating curve (AUROC) of 0.996 and an area under the precision-recall curve (AUPRC) of 0.940. For the detection of HCM, the model also achieved an AUROC of 0.980 and an AUPRC of 0.953, respectively. The model prospectively exhibited stability in temporal validation. Furthermore, representative images of the Gradient-weighted Class Activation Mapping (Grad-CAM) technique analysis showed the regions corresponding to the anterior and anteroseptal leads were the most important areas for the prediction of HCM or DCM. This temporally validated fine-tuned ResNet50 model shows promise to inexpensively detect individuals with HCM or DCM.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98e1/11939401/0e0246c7f940/bioengineering-12-00250-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98e1/11939401/61eca5b4e349/bioengineering-12-00250-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98e1/11939401/f257e3688406/bioengineering-12-00250-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98e1/11939401/50a6870bea5d/bioengineering-12-00250-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98e1/11939401/0439012a2089/bioengineering-12-00250-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98e1/11939401/0e0246c7f940/bioengineering-12-00250-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98e1/11939401/61eca5b4e349/bioengineering-12-00250-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98e1/11939401/f257e3688406/bioengineering-12-00250-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98e1/11939401/50a6870bea5d/bioengineering-12-00250-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98e1/11939401/0439012a2089/bioengineering-12-00250-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98e1/11939401/0e0246c7f940/bioengineering-12-00250-g007.jpg

相似文献

[1]
Identifying Hypertrophic or Dilated Cardiomyopathy: Development and Validation of a Fine-Tuned ResNet50 Model Based on Electrocardiogram Image.

Bioengineering (Basel). 2025-2-28

[2]
Identification of Hypertrophic Cardiomyopathy on Electrocardiographic Images with Deep Learning.

medRxiv. 2023-12-28

[3]
Artificial intelligence study on left ventricular function among normal individuals, hypertrophic cardiomyopathy and dilated cardiomyopathy patients using 1.5T cardiac cine MR images obtained by SSFP sequence.

Br J Radiol. 2022-5-1

[4]
Identifying Obstructive Hypertrophic Cardiomyopathy from Nonobstructive Hypertrophic Cardiomyopathy: Development and Validation of a Model Based on Electrocardiogram Features.

Glob Heart. 2023

[5]
Detection of hypertrophic cardiomyopathy by an artificial intelligence electrocardiogram in children and adolescents.

Int J Cardiol. 2021-10-1

[6]
Detection of Left Ventricular Systolic Dysfunction From Electrocardiographic Images.

Circulation. 2023-8-29

[7]
Hypertrophic cardiomyopathy detection with artificial intelligence electrocardiography in international cohorts: an external validation study.

Eur Heart J Digit Health. 2024-4-15

[8]
Cardiac magnetic resonance radiomics for disease classification.

Eur Radiol. 2023-4

[9]
Deep Learning-Based Electrocardiogram Model (EIANet) to Predict Emergency Department Cardiac Arrest: Development and External Validation Study.

J Med Internet Res. 2025-2-28

[10]
Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram.

J Am Coll Cardiol. 2020-2-25

本文引用的文献

[1]
Artificial Intelligence in the Differential Diagnosis of Cardiomyopathy Phenotypes.

Diagnostics (Basel). 2024-1-10

[2]
Electrocardiographic characteristics associated with late gadolinium enhancement and prognostic value in patients with dilated cardiomyopathy.

Front Cardiovasc Med. 2023-10-18

[3]
Echocardiography-based machine learning algorithm for distinguishing ischemic cardiomyopathy from dilated cardiomyopathy.

BMC Cardiovasc Disord. 2023-9-26

[4]
Dilated cardiomyopathy: causes, mechanisms, and current and future treatment approaches.

Lancet. 2023-9-16

[5]
2023 ESC Guidelines for the management of cardiomyopathies.

Eur Heart J. 2023-10-1

[6]
Saliency maps provide insights into artificial intelligence-based electrocardiography models for detecting hypertrophic cardiomyopathy.

J Electrocardiol. 2023

[7]
Diagnostic and prognostic electrocardiographic features in patients with hypertrophic cardiomyopathy.

Eur Heart J Suppl. 2023-4-26

[8]
Artificial intelligence-enabled classification of hypertrophic heart diseases using electrocardiograms.

Cardiovasc Digit Health J. 2023-3-7

[9]
Twenty-four hour variability of inverted T-waves in patients with apical hypertrophic cardiomyopathy.

Front Cardiovasc Med. 2022-9-21

[10]
2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death.

Eur Heart J. 2022-10-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索