Suppr超能文献

具有抗菌性能的铜纳米生物材料的设计与合成

Design and Synthesis of Copper Nanobiomaterials with Antimicrobial Properties.

作者信息

Ortega-Nieto Clara, Losada-Garcia Noelia, Pessela Benevides C, Domingo-Calap Pilar, Palomo Jose M

机构信息

Instituto de Catalisis y Petroleoquimica (ICP), CSIC, Marie Curie 2, 28049 Madrid, Spain.

Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera, 9, Cantoblanco, 28049 Madrid, Spain.

出版信息

ACS Bio Med Chem Au. 2023 Apr 11;3(4):349-358. doi: 10.1021/acsbiomedchemau.2c00089. eCollection 2023 Aug 16.

Abstract

In this work, nanostructured copper materials have been designed, synthetized, and evaluated in order to produce a more efficient and sustainable copper bionanohybrid with catalytical and antimicrobial properties. Thus, conditions are sought where the most critical steps are reduced or minimized, such as the use of reducing agents or the cryogenization step. In addition, the new materials have been characterized through different techniques, and their oxidative and reductive capacities, as well as their antimicrobial activity, have been evaluated. The addition of different quantities of a reducing agent in the synthesis method generated copper bionanohybrids with different metallic species, nanoparticles sizes, and structures. The antimicrobial properties of the bionanohybrids were studied against different strains of Gram-positive and Gram-negative bacteria through two different methods: by counting the CFU and via the disk diffusion test, respectively. The bionanohybrids have demonstrated that different efficiencies depending on the bacterial strain were confronted with. The hybrids with the highest percentage of reduction showed the best antimicrobial efficiency against and bacteria (>96 or >77% in 4 h, respectively) compared to 31% bacteria reduction using . Also, the antimicrobial activity against materials was obtained with (31 mm inhibition zone and 125 μg/mL minimum inhibitory concentration value). Interestingly, the better antimicrobial activity of the nanobiohybrids against Gram-positive bacteria was obtained with some with a lower reduction step in the synthesis, or (>94% bacterial reduction in 4 h).

摘要

在这项工作中,设计、合成并评估了纳米结构铜材料,以制备一种具有催化和抗菌性能的更高效、可持续的铜生物纳米杂化物。因此,要寻找减少或最小化最关键步骤的条件,比如还原剂的使用或冷冻步骤。此外,通过不同技术对新材料进行了表征,并评估了它们的氧化和还原能力以及抗菌活性。在合成方法中添加不同量的还原剂会生成具有不同金属种类、纳米颗粒尺寸和结构的铜生物纳米杂化物。通过两种不同方法研究了生物纳米杂化物对不同革兰氏阳性和革兰氏阴性细菌菌株的抗菌性能:分别通过计算菌落形成单位(CFU)和采用纸片扩散试验。生物纳米杂化物已证明,根据所面对的细菌菌株不同,效率也不同。与使用[某种物质]使细菌减少31%相比,还原率最高的杂化物对[特定革兰氏阳性菌]和[特定革兰氏阴性菌]显示出最佳抗菌效率(分别在4小时内>96%或>77%)。此外,对于[某种材料]也获得了抗菌活性(抑菌圈为31毫米,最低抑菌浓度值为125微克/毫升)。有趣的是,一些在合成中还原步骤较低的纳米生物杂化物对革兰氏阳性菌[特定细菌]具有更好的抗菌活性,如[具体杂化物1]或[具体杂化物2](在4小时内细菌减少>94%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ba5/10436259/0d0c9762bced/bg2c00089_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验