Suppr超能文献

使用3D微电极阵列探索视网膜神经节细胞对多模态刺激的编码。

Exploring retinal ganglion cells encoding to multi-modal stimulation using 3D microelectrodes arrays.

作者信息

Zhang Kui, Liu Yaoyao, Song Yilin, Xu Shihong, Yang Yan, Jiang Longhui, Sun Shutong, Luo Jinping, Wu Yirong, Cai Xinxia

机构信息

State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China.

School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China.

出版信息

Front Bioeng Biotechnol. 2023 Aug 1;11:1245082. doi: 10.3389/fbioe.2023.1245082. eCollection 2023.

Abstract

Microelectrode arrays (MEA) are extensively utilized in encoding studies of retinal ganglion cells (RGCs) due to their capacity for simultaneous recording of neural activity across multiple channels. However, conventional planar MEAs face limitations in studying RGCs due to poor coupling between electrodes and RGCs, resulting in low signal-to-noise ratio (SNR) and limited recording sensitivity. To overcome these challenges, we employed photolithography, electroplating, and other processes to fabricate a 3D MEA based on the planar MEA platform. The 3D MEA exhibited several improvements compared to planar MEA, including lower impedance (8.73 ± 1.66 kΩ) and phase delay (-15.11° ± 1.27°), as well as higher charge storage capacity (CSC = 10.16 ± 0.81 mC/cm), cathodic charge storage capacity (CSCc = 7.10 ± 0.55 mC/cm), and SNR (SNR = 8.91 ± 0.57). Leveraging the advanced 3D MEA, we investigated the encoding characteristics of RGCs under multi-modal stimulation. Optical, electrical, and chemical stimulation were applied as sensory inputs, and distinct response patterns and response times of RGCs were detected, as well as variations in rate encoding and temporal encoding. Specifically, electrical stimulation elicited more effective RGC firing, while optical stimulation enhanced RGC synchrony. These findings hold promise for advancing the field of neural encoding.

摘要

微电极阵列(MEA)因其能够跨多个通道同时记录神经活动,而被广泛应用于视网膜神经节细胞(RGC)的编码研究。然而,传统的平面微电极阵列在研究视网膜神经节细胞时存在局限性,因为电极与视网膜神经节细胞之间的耦合较差,导致信噪比(SNR)低且记录灵敏度有限。为了克服这些挑战,我们采用光刻、电镀等工艺,在平面微电极阵列平台的基础上制造了一种三维微电极阵列。与平面微电极阵列相比,三维微电极阵列有多项改进,包括更低的阻抗(8.73±1.66 kΩ)和相位延迟(-15.11°±1.27°),以及更高的电荷存储容量(CSC = 10.16±0.81 mC/cm)、阴极电荷存储容量(CSCc = 7.10±0.55 mC/cm)和信噪比(SNR = 8.91±0.57)。利用先进的三维微电极阵列,我们研究了多模态刺激下视网膜神经节细胞的编码特性。将光、电和化学刺激作为感觉输入,检测到视网膜神经节细胞不同的反应模式和反应时间,以及速率编码和时间编码的变化。具体而言,电刺激引发了更有效的视网膜神经节细胞放电,而光刺激增强了视网膜神经节细胞的同步性。这些发现为推动神经编码领域的发展带来了希望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/717d/10434521/53dc5b5592eb/fbioe-11-1245082-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验