Suppr超能文献

基于细胞毒性 T 淋巴细胞逃逸基因的机器学习开发了一种新的特征,用于预测肾透明细胞癌患者的预后和免疫治疗反应。

Machine learning-based on cytotoxic T lymphocyte evasion gene develops a novel signature to predict prognosis and immunotherapy responses for kidney renal clear cell carcinoma patients.

机构信息

Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China.

出版信息

Front Immunol. 2023 Jul 31;14:1192428. doi: 10.3389/fimmu.2023.1192428. eCollection 2023.

Abstract

BACKGROUND

Immunotherapy resistance has become a difficult point in treating kidney renal clear cell carcinoma (KIRC) patients, mainly because of immune evasion. Currently, there is no effective signature to predict immunotherapy. Therefore, we use machine learning algorithms to construct a signature based on cytotoxic T lymphocyte evasion genes (CTLEGs) to predict the immunotherapy responses of patients, so as to screen patients effective for immunotherapy.

METHODS

In public data sets and our in-house cohort, we used 10 machine learning algorithms to screen the optimal model with 89 combinations under the cross-validation framework, and 101 published signatures were collected. The relationship between the CTLEG signature (CTLEGS) and clinical variables was analyzed. We analyzed the role of CTLES in other types of cancer by pan-cancer analysis. The immune cell infiltration and biological characteristics were evaluated. Moreover, the response to immunotherapy and drug sensitivity of different risk groups were investigated. The key gene closely related to the signature was identified by WGCNA. We also conducted cell functional experiments and clinical tissue validation of key gene.

RESULTS

In public data sets and our in-house cohort, the CTLEGS shows good prediction performance. The CTLEGS can be regard as an independent risk factor for KIRC. Compared with 101 published models, our signature shows considerable superiority. The high-risk group has abundant infiltration of immunosuppressive cells and high expression of T cell depletion markers, which are characterized by immunosuppressive phenotype, minimal benefit from immunotherapy, and resistance to sunitinib and sorafenib. The CTLEGS was also strongly correlated with immunity in pan-cancer. Immunohistochemistry verified that T cell depletion marker LAG3 is highly expressed in high-risk groups in the clinical in-house cohort. The key CTLEG STAT2 can promote the proliferation, migration and invasion of KIRC cell.

CONCLUSIONS

CTLEGS can accurately predict the prognosis of patients and their response to immunotherapy. It can provide guidance for the precise treatment of KIRC and help clinicians identify patients who may benefit from immunotherapy.

摘要

背景

免疫疗法耐药性已成为治疗肾透明细胞癌(KIRC)患者的难点,主要是因为免疫逃逸。目前,还没有有效的特征来预测免疫治疗。因此,我们使用机器学习算法构建基于细胞毒性 T 淋巴细胞逃逸基因(CTLEGs)的特征来预测患者的免疫治疗反应,从而筛选出对免疫治疗有效的患者。

方法

在公共数据集和我们的内部队列中,我们使用 10 种机器学习算法在交叉验证框架下筛选出 89 种组合的最佳模型,并收集了 101 个已发表的特征。分析 CTLEG 特征(CTLEGS)与临床变量之间的关系。通过泛癌分析研究 CTLES 在其他类型癌症中的作用。评估免疫细胞浸润和生物学特征。此外,还研究了不同风险组对免疫治疗和药物敏感性的反应。通过 WGCNA 鉴定与特征密切相关的关键基因。我们还进行了细胞功能实验和关键基因的临床组织验证。

结果

在公共数据集和我们的内部队列中,CTLEGS 表现出良好的预测性能。CTLEGS 可以作为 KIRC 的一个独立危险因素。与 101 个已发表的模型相比,我们的特征具有相当大的优势。高危组有丰富的免疫抑制细胞浸润和高水平的 T 细胞耗竭标志物,表现出免疫抑制表型,从免疫治疗中获益最小,对舒尼替尼和索拉非尼耐药。CTLEGS 在泛癌中也与免疫密切相关。免疫组织化学验证了在临床内部队列的高危组中,T 细胞耗竭标志物 LAG3 高表达。关键 CTLEG STAT2 可促进 KIRC 细胞的增殖、迁移和侵袭。

结论

CTLEGS 可以准确预测患者的预后及其对免疫治疗的反应。它可以为 KIRC 的精准治疗提供指导,帮助临床医生识别可能受益于免疫治疗的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6db4/10436106/daf4db5ec18f/fimmu-14-1192428-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验