文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 SEER 数据库和中国队列研究的列线图预测胰腺癌患者放疗后总生存的研究。

The Nomogram predicting the overall survival of patients with pancreatic cancer treated with radiotherapy: a study based on the SEER database and a Chinese cohort.

机构信息

Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China.

Department of Hematology and Oncology, Shenzhen Children's Hospital Affiliated to China Medical University, Shenzhen, China.

出版信息

Front Endocrinol (Lausanne). 2023 Oct 25;14:1266318. doi: 10.3389/fendo.2023.1266318. eCollection 2023.


DOI:10.3389/fendo.2023.1266318
PMID:37955009
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10634587/
Abstract

OBJECTIVE: Patients with pancreatic cancer (PC) have a poor prognosis. Radiotherapy (RT) is a standard palliative treatment in clinical practice, and there is no effective clinical prediction model to predict the prognosis of PC patients receiving radiotherapy. This study aimed to analyze PC's clinical characteristics, find the factors affecting PC patients' prognosis, and construct a visual Nomogram to predict overall survival (OS). METHODS: SEER*Stat software was used to collect clinical data from the Surveillance, Epidemiology, and End Results (SEER) database of 3570 patients treated with RT. At the same time, the relevant clinical data of 115 patients were collected from the Affiliated Cancer Hospital of Zhengzhou University. The SEER database data were randomly divided into the training and internal validation cohorts in a 7:3 ratio, with all patients at The Affiliated Cancer Hospital of Zhengzhou University as the external validation cohort. The lasso regression was used to screen the relevant variables. All non-zero variables were included in the multivariate analysis. Multivariate Cox proportional risk regression analysis was used to determine the independent prognostic factors. The Kaplan-Meier(K-M) method was used to plot the survival curves for different treatments (surgery, RT, chemotherapy, and combination therapy) and calculate the median OS. The Nomogram was constructed to predict the survival rates at 1, 3, and 5 years, and the time-dependent receiver operating characteristic curves (ROC) were plotted with the calculated curves. Calculate the area under the curve (AUC), the Bootstrap method was used to plot the calibration curve, and the clinical efficacy of the prediction model was evaluated using decision curve analysis (DCA). RESULTS: The median OS was 25.0, 18.0, 11.0, and 4.0 months in the surgery combined with chemoradiotherapy (SCRT), surgery combined with radiotherapy, chemoradiotherapy (CRT), and RT alone cohorts, respectively. Multivariate Cox regression analysis showed that age, N stage, M stage, chemotherapy, surgery, lymph node surgery, and Grade were independent prognostic factors for patients. Nomogram models were constructed to predict patients' OS. 1-, 3-, and 5-year Time-dependent ROC curves were plotted, and AUC values were calculated. The results suggested that the AUCs were 0.77, 0.79, and 0.79 for the training cohort, 0.79, 0.82, and 0.81 for the internal validation cohort, and 0.73, 0.93, and 0.88 for the external validation cohort. The calibration curves Show that the model prediction probability is in high agreement with the actual observation probability, and the DCA curve shows a high net return. CONCLUSION: SCRT significantly improves the OS of PC patients. We developed and validated a Nomogram to predict the OS of PC patients receiving RT.

摘要

目的:胰腺癌(PC)患者预后较差。放射治疗(RT)是临床实践中的标准姑息治疗方法,但目前尚无有效的临床预测模型来预测接受放疗的 PC 患者的预后。本研究旨在分析 PC 的临床特征,找出影响 PC 患者预后的因素,并构建一个可视化诺莫图来预测总生存期(OS)。

方法:使用 SEER*Stat 软件从监测、流行病学和结果(SEER)数据库中收集了 3570 名接受 RT 治疗的患者的临床数据。同时,从郑州大学附属肿瘤医院收集了 115 名患者的相关临床数据。SEER 数据库数据以 7:3 的比例随机分为训练和内部验证队列,郑州大学附属肿瘤医院的所有患者为外部验证队列。使用套索回归筛选相关变量。所有非零变量均纳入多变量分析。多变量 Cox 比例风险回归分析确定独立预后因素。采用 Kaplan-Meier(K-M)法绘制不同治疗方法(手术、RT、化疗和联合治疗)的生存曲线,并计算中位 OS。构建诺莫图预测 1、3 和 5 年的生存率,计算计算曲线的时间依赖性接受者操作特征曲线(ROC)。计算曲线下面积(AUC),使用 Bootstrap 方法绘制校准曲线,并使用决策曲线分析(DCA)评估预测模型的临床疗效。

结果:手术联合放化疗(SCRT)、手术联合放疗、放化疗(CRT)和 RT 单独治疗队列的中位 OS 分别为 25.0、18.0、11.0 和 4.0 个月。多变量 Cox 回归分析显示,年龄、N 分期、M 分期、化疗、手术、淋巴结手术和分级是患者的独立预后因素。构建了预测患者 OS 的诺莫图模型。绘制了 1、3 和 5 年的时间依赖性 ROC 曲线,并计算了 AUC 值。结果表明,训练队列的 AUC 值分别为 0.77、0.79 和 0.79,内部验证队列为 0.79、0.82 和 0.81,外部验证队列为 0.73、0.93 和 0.88。校准曲线表明,模型预测概率与实际观察概率高度一致,DCA 曲线显示高净收益。

结论:SCRT 显著提高了 PC 患者的 OS。我们开发并验证了一个诺莫图来预测接受 RT 的 PC 患者的 OS。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afc1/10634587/92b2a7a8a523/fendo-14-1266318-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afc1/10634587/db1e05fd0996/fendo-14-1266318-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afc1/10634587/c2f19ccbbe7c/fendo-14-1266318-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afc1/10634587/f72d87259303/fendo-14-1266318-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afc1/10634587/f93187353ad5/fendo-14-1266318-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afc1/10634587/b35318c9b390/fendo-14-1266318-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afc1/10634587/60c9ea9d34b3/fendo-14-1266318-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afc1/10634587/e45e473734bd/fendo-14-1266318-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afc1/10634587/92b2a7a8a523/fendo-14-1266318-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afc1/10634587/db1e05fd0996/fendo-14-1266318-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afc1/10634587/c2f19ccbbe7c/fendo-14-1266318-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afc1/10634587/f72d87259303/fendo-14-1266318-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afc1/10634587/f93187353ad5/fendo-14-1266318-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afc1/10634587/b35318c9b390/fendo-14-1266318-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afc1/10634587/60c9ea9d34b3/fendo-14-1266318-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afc1/10634587/e45e473734bd/fendo-14-1266318-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afc1/10634587/92b2a7a8a523/fendo-14-1266318-g008.jpg

相似文献

[1]
The Nomogram predicting the overall survival of patients with pancreatic cancer treated with radiotherapy: a study based on the SEER database and a Chinese cohort.

Front Endocrinol (Lausanne). 2023

[2]
Development and validation of a prognostic nomogram for breast cancer patients who underwent chemoradiotherapy and surgery: a retrospective cohort study based on the SEER database and two Chinese cohorts.

Am J Cancer Res. 2023-11-15

[3]
[Establishment of a prognostic nomogram and discussion on optimal treatment for cervical adenocarcinoma:a retrospective study based on SEER database and Chinese single-center data].

Zhonghua Fu Chan Ke Za Zhi. 2024-4-25

[4]
A nomogram for predicting survival in patients with advanced (stage III/IV) pancreatic body tail cancer: a SEER-based study.

BMC Gastroenterol. 2022-6-3

[5]
Nomogram Predicts Risk and Prognostic Factors for Bone Metastasis of Pancreatic Cancer: A Population-Based Analysis.

Front Endocrinol (Lausanne). 2021

[6]
Nomogram predicting overall survival of rectal squamous cell carcinomas patients based on the SEER database: A population-based STROBE cohort study.

Medicine (Baltimore). 2019-11

[7]
A web-based nomogram model for predicting the overall survival of hepatocellular carcinoma patients with external beam radiation therapy: A population study based on SEER database and a Chinese cohort.

Front Endocrinol (Lausanne). 2023

[8]
A nomogram model based on the number of examined lymph nodes-related signature to predict prognosis and guide clinical therapy in gastric cancer.

Front Immunol. 2022

[9]
Prognostic significance of surgery and radiotherapy in elderly patients with localized prostate cancer: establishing and time-based external validation a nomogram from SEER-based study.

BMC Urol. 2024-1-6

[10]
Nomogram for predicting outcomes in elderly women with mucinous breast cancer: A retrospective study combined with external validation in southwest China.

Cancer Rep (Hoboken). 2024-7

引用本文的文献

[1]
Survival Outcomes and Prognostic Factors in Follicular Lymphoma-Grade 3: A Study Based on the SEER Database.

Sci Prog. 2025

[2]
The Trends and Outcomes of Initial Palliative Chemotherapy in Patients with Pancreatic Cancer in Korea Based on National Health Insurance Service Data.

J Clin Med. 2024-5-30

本文引用的文献

[1]
Metastasis.

Cell. 2023-4-13

[2]
A web-based nomogram model for predicting the overall survival of hepatocellular carcinoma patients with external beam radiation therapy: A population study based on SEER database and a Chinese cohort.

Front Endocrinol (Lausanne). 2023

[3]
Stereotactic radiotherapy and the potential role of magnetic resonance-guided adaptive techniques for pancreatic cancer.

World J Gastroenterol. 2022-2-21

[4]
Cancer statistics, 2022.

CA Cancer J Clin. 2022-1

[5]
Pan-cancer analysis reveals molecular patterns associated with age.

Cell Rep. 2021-12-7

[6]
Decision curve analysis to evaluate the clinical benefit of prediction models.

Spine J. 2021-10

[7]
Total Neoadjuvant Therapy for Operable Pancreatic Cancer.

Ann Surg Oncol. 2021-4

[8]
Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma.

CA Cancer J Clin. 2020-9

[9]
Early T Stage Is Associated With Poor Prognosis in Patients With Metastatic Liver Colorectal Cancer.

Front Oncol. 2020-6-18

[10]
Cancer statistics, 2020.

CA Cancer J Clin. 2020-1-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索