Suppr超能文献

模拟皮质骨和松质骨以加速组织再生。

Simulation of Cortical and Cancellous Bone to Accelerate Tissue Regeneration.

作者信息

Fan Zhihai, Liu Hongxiang, Ding Zhaozhao, Xiao Liying, Lu Qiang, Kaplan David L

机构信息

Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People's Republic of China.

State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China.

出版信息

Adv Funct Mater. 2023 Aug 15;33(33). doi: 10.1002/adfm.202301839. Epub 2023 Apr 27.

Abstract

Different tissues have complex anisotropic structures to support biological functions. Mimicking these complex structures remains a challenge in biomaterials designs in support of tissue regeneration. Here, inspired by different types of silk nanofibers, a composite materials strategy was pursued towards this challenge. A combination of fabrication methods was utilized to achieve separate control of amorphous and beta-sheet rich silk nanofibers in the same solution. Aqueous solutions containing these two structural types of silk nanofibers were then simultaneously treated with an electric field and with ethylene glycol diglycidyl ether (EGDE). Under these conditions, the beta-sheet rich silk nanofibers in the mixture responded to the electric field while the amorphous nanofibers were active in the crosslinking process with the EGDE. As a result, cryogels with anisotropic structures were prepared, including mimics for cortical- and cancellous-like bone biomaterials as a complex osteoinductive niche. studies revealed that mechanical cues of the cryogels induced osteodifferentiation of stem cells while the anisotropy inside the cryogels influenced immune reactions of macrophages. These bioactive cryogels also stimulated improved bone regeneration through modulation of inflammation, angiogenesis and osteogenesis responses, suggesting an effective strategy to develop bioactive matrices with complex anisotropic structures beneficial to tissue regeneration.

摘要

不同组织具有复杂的各向异性结构以支持生物学功能。在支持组织再生的生物材料设计中,模仿这些复杂结构仍然是一项挑战。在此,受不同类型的丝纳米纤维启发,我们针对这一挑战采用了一种复合材料策略。利用多种制造方法在同一溶液中分别控制富含无定形和β-折叠的丝纳米纤维。然后,含有这两种结构类型丝纳米纤维的水溶液同时接受电场和乙二醇二缩水甘油醚(EGDE)处理。在这些条件下,混合物中富含β-折叠的丝纳米纤维对电场有反应,而无定形纳米纤维在与EGDE的交联过程中具有活性。结果,制备出了具有各向异性结构的冷冻凝胶,包括模仿皮质骨和松质骨样骨生物材料的结构,作为一种复杂的骨诱导微环境。研究表明,冷冻凝胶的力学线索诱导干细胞的骨分化,而冷冻凝胶内部的各向异性影响巨噬细胞的免疫反应。这些生物活性冷冻凝胶还通过调节炎症、血管生成和成骨反应刺激了更好的骨再生,这表明开发具有复杂各向异性结构且有利于组织再生的生物活性基质是一种有效的策略。

相似文献

2
Tough Anisotropic Silk Nanofiber Hydrogels with Osteoinductive Capacity.具有骨诱导能力的坚韧各向异性丝纳米纤维水凝胶
ACS Biomater Sci Eng. 2020 Apr 13;6(4):2357-2367. doi: 10.1021/acsbiomaterials.0c00143. Epub 2020 Mar 25.
5
Macroporous Silk Nanofiber Cryogels with Tunable Properties.具有可调特性的大孔丝纳米纤维冷冻凝胶。
Biomacromolecules. 2022 May 9;23(5):2160-2169. doi: 10.1021/acs.biomac.2c00222. Epub 2022 Apr 20.

引用本文的文献

本文引用的文献

8
Macroporous Silk Nanofiber Cryogels with Tunable Properties.具有可调特性的大孔丝纳米纤维冷冻凝胶。
Biomacromolecules. 2022 May 9;23(5):2160-2169. doi: 10.1021/acs.biomac.2c00222. Epub 2022 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验