Suppr超能文献

理想化和贬低的社会推理模型。

A social inference model of idealization and devaluation.

机构信息

Division of Psychiatry, University College London.

Laureate Institute for Brain Research.

出版信息

Psychol Rev. 2024 Apr;131(3):749-780. doi: 10.1037/rev0000430. Epub 2023 Aug 21.

Abstract

People often form polarized beliefs, imbuing objects (e.g., themselves or others) with unambiguously positive or negative qualities. In clinical settings, this is referred to as dichotomous thinking or "splitting" and is a feature of several psychiatric disorders. Here, we introduce a Bayesian model of splitting that parameterizes a tendency to rigidly categorize objects as either entirely "Bad" or "Good," rather than to flexibly learn dispositions along a continuous scale. Distinct from the previous descriptive theories, the model makes quantitative predictions about how dichotomous beliefs emerge and are updated in light of new information. Specifically, the model addresses how splitting is context-dependent, yet exhibits stability across time. A key model feature is that phases of devaluation and/or idealization are consolidated by rationally attributing counter-evidence to factors. For example, when another person is idealized, their less-than-perfect behavior is attributed to unfavorable external circumstances. However, sufficient counter-evidence can trigger switches of polarity, producing bistable dynamics. We show that the model can be fitted to empirical data, to measure individual susceptibility to relational instability. For example, we find that a latent categorical belief that others are "Good" accounts for less changeable, and more certain, character impressions of benevolent as opposed to malevolent others among healthy participants. By comparison, character impressions made by participants with borderline personality disorder reveal significantly higher and more symmetric splitting. The generative framework proposed invites applications for modeling oscillatory relational and affective dynamics in psychotherapeutic contexts. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

摘要

人们常常形成两极化的信念,将事物(例如自己或他人)赋予明确的积极或消极品质。在临床环境中,这被称为二分思维或“分裂”,是几种精神障碍的特征。在这里,我们引入了一种分裂的贝叶斯模型,该模型参数化了一种将物体生硬地归类为“完全坏”或“完全好”的倾向,而不是沿着连续尺度灵活地学习倾向。与之前的描述性理论不同,该模型对二分信念如何根据新信息出现和更新做出定量预测。具体来说,该模型解决了分裂如何依赖于上下文,但又具有跨时间的稳定性。模型的一个关键特征是,贬值和/或理想化阶段通过理性地将反证归因于因素而得到巩固。例如,当另一个人被理想化时,他们不完美的行为归因于不利的外部环境。然而,足够的反证可以触发极性的转换,产生双稳态动力学。我们表明,该模型可以拟合经验数据,以衡量个体对关系不稳定的易感性。例如,我们发现,一个潜在的类别信念,即他人是“好”的,解释了健康参与者对仁慈的人而不是恶意的人更不易变和更确定的性格印象。相比之下,边缘型人格障碍患者的性格印象显示出明显更高和更对称的分裂。所提出的生成框架邀请在心理治疗环境中应用建模振荡的关系和情感动力学。(PsycInfo 数据库记录(c)2024 APA,保留所有权利)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d48b/11114086/03c918299232/rev_131_3_749_fig1a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验