Suppr超能文献

基于子组件指导的深度学习方法用于可解释的癌症药物反应预测。

A subcomponent-guided deep learning method for interpretable cancer drug response prediction.

机构信息

College of Informatics, Huazhong Agricultural University, Wuhan, China.

出版信息

PLoS Comput Biol. 2023 Aug 21;19(8):e1011382. doi: 10.1371/journal.pcbi.1011382. eCollection 2023 Aug.

Abstract

Accurate prediction of cancer drug response (CDR) is a longstanding challenge in modern oncology that underpins personalized treatment. Current computational methods implement CDR prediction by modeling responses between entire drugs and cell lines, without the consideration that response outcomes may primarily attribute to a few finer-level 'subcomponents', such as privileged substructures of the drug or gene signatures of the cancer cell, thus producing predictions that are hard to explain. Herein, we present SubCDR, a subcomponent-guided deep learning method for interpretable CDR prediction, to recognize the most relevant subcomponents driving response outcomes. Technically, SubCDR is built upon a line of deep neural networks that enables a set of functional subcomponents to be extracted from each drug and cell line profile, and breaks the CDR prediction down to identifying pairwise interactions between subcomponents. Such a subcomponent interaction form can offer a traceable path to explicitly indicate which subcomponents contribute more to the response outcome. We verify the superiority of SubCDR over state-of-the-art CDR prediction methods through extensive computational experiments on the GDSC dataset. Crucially, we found many predicted cases that demonstrate the strength of SubCDR in finding the key subcomponents driving responses and exploiting these subcomponents to discover new therapeutic drugs. These results suggest that SubCDR will be highly useful for biomedical researchers, particularly in anti-cancer drug design.

摘要

准确预测癌症药物反应 (CDR) 是现代肿瘤学中的一个长期挑战,它是个性化治疗的基础。目前的计算方法通过模拟整个药物和细胞系之间的反应来实现 CDR 预测,而没有考虑到反应结果可能主要归因于少数更精细的“子组件”,例如药物的特权子结构或癌细胞的基因特征,从而产生难以解释的预测。在此,我们提出了 SubCDR,这是一种用于可解释的 CDR 预测的基于子组件的深度学习方法,用于识别驱动反应结果的最相关子组件。从技术上讲,SubCDR 建立在一系列深度神经网络的基础上,这些网络能够从每个药物和细胞系的特征中提取一组功能子组件,并将 CDR 预测分解为识别子组件之间的成对相互作用。这种子组件相互作用的形式可以提供一条可追踪的路径,明确指出哪些子组件对反应结果的贡献更大。我们通过在 GDSC 数据集上进行广泛的计算实验,验证了 SubCDR 优于最先进的 CDR 预测方法的优越性。至关重要的是,我们发现了许多预测案例,这些案例证明了 SubCDR 在寻找驱动反应的关键子组件以及利用这些子组件发现新的治疗药物方面的优势。这些结果表明,SubCDR 将对生物医学研究人员非常有用,特别是在抗癌药物设计方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea34/10470940/07f6f044bd82/pcbi.1011382.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验