Suppr超能文献

醌介导的非水还原电合成用氢阳极。

Quinone-mediated hydrogen anode for non-aqueous reductive electrosynthesis.

机构信息

Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.

Process Research & Development, Merck & Co., Inc., Rahway, NJ, USA.

出版信息

Nature. 2023 Nov;623(7985):71-76. doi: 10.1038/s41586-023-06534-2. Epub 2023 Aug 21.

Abstract

Electrochemical synthesis can provide more sustainable routes to industrial chemicals. Electrosynthetic oxidations may often be performed 'reagent-free', generating hydrogen (H) derived from the substrate as the sole by-product at the counter electrode. Electrosynthetic reductions, however, require an external source of electrons. Sacrificial metal anodes are commonly used for small-scale applications, but more sustainable options are needed at larger scale. Anodic water oxidation is an especially appealing option, but many reductions require anhydrous, air-free reaction conditions. In such cases, H represents an ideal alternative, motivating the growing interest in the electrochemical hydrogen oxidation reaction (HOR) under non-aqueous conditions. Here we report a mediated H anode that achieves indirect electrochemical oxidation of H by pairing thermal catalytic hydrogenation of an anthraquinone mediator with electrochemical oxidation of the anthrahydroquinone. This quinone-mediated H anode is used to support nickel-catalysed cross-electrophile coupling (XEC), a reaction class gaining widespread adoption in the pharmaceutical industry. Initial validation of this method in small-scale batch reactions is followed by adaptation to a recirculating flow reactor that enables hectogram-scale synthesis of a pharmaceutical intermediate. The mediated H anode technology disclosed here offers a general strategy to support H-driven electrosynthetic reductions.

摘要

电化学合成可以为工业化学品提供更可持续的路线。电合成氧化通常可以“无试剂”进行,在对电极上仅生成源自底物的氢气 (H) 作为唯一的副产物。然而,电合成还原需要外部电子源。牺牲金属阳极通常用于小规模应用,但在更大规模上需要更可持续的选择。阳极水氧化是一种特别有吸引力的选择,但许多还原需要无水、无氧的反应条件。在这种情况下,H 代表了一种理想的替代方案,这激发了人们对非水条件下电化学氢氧化反应 (HOR) 的日益浓厚的兴趣。在这里,我们报告了一种介导的 H 阳极,通过将蒽醌介体的热催化氢化与蒽氢醌的电化学氧化配对,实现了 H 的间接电化学氧化。这种醌介导的 H 阳极用于支持镍催化的交叉亲电子偶联 (XEC),这是一种在制药行业得到广泛应用的反应类别。该方法在小规模分批反应中的初步验证之后,适应了循环流动反应器,从而能够进行制药中间体的公斤级规模合成。这里公开的介导 H 阳极技术提供了一种支持 H 驱动的电合成还原的通用策略。

相似文献

1
Quinone-mediated hydrogen anode for non-aqueous reductive electrosynthesis.醌介导的非水还原电合成用氢阳极。
Nature. 2023 Nov;623(7985):71-76. doi: 10.1038/s41586-023-06534-2. Epub 2023 Aug 21.
5
Indirect HO synthesis without H.无血红素的间接血红素加氧酶合成
Nat Commun. 2024 Jan 26;15(1):766. doi: 10.1038/s41467-024-44741-1.
8
A zinc-quinone battery for paired hydrogen peroxide electrosynthesis.用于配对过氧化氢电合成的锌-醌电池。
J Colloid Interface Sci. 2020 Feb 1;559:324-330. doi: 10.1016/j.jcis.2019.10.031. Epub 2019 Oct 9.
9
Electrocatalytic Hydrogen Production Trilogy.电催化制氢三部曲
Angew Chem Int Ed Engl. 2021 Sep 1;60(36):19550-19571. doi: 10.1002/anie.202009854. Epub 2021 Mar 18.

引用本文的文献

5
Borohydride Oxidation as Counter Reaction in Reductive Electrosynthesis.硼氢化物氧化作为还原电合成中的逆反应
Angew Chem Int Ed Engl. 2025 May 12;64(20):e202501653. doi: 10.1002/anie.202501653. Epub 2025 Apr 3.
6
The Future of Electro-organic Synthesis in Drug Discovery and Early Development.药物发现与早期开发中电有机合成的未来。
ACS Org Inorg Au. 2024 Nov 16;4(6):571-578. doi: 10.1021/acsorginorgau.4c00068. eCollection 2024 Dec 4.
7
Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis.交叉亲电偶联:合成中的原理、方法及应用
Chem Rev. 2024 Dec 11;124(23):13397-13569. doi: 10.1021/acs.chemrev.4c00524. Epub 2024 Nov 26.

本文引用的文献

4
Modular terpene synthesis enabled by mild electrochemical couplings.温和电化学偶联实现模块化萜类合成。
Science. 2022 Feb 18;375(6582):745-752. doi: 10.1126/science.abn1395. Epub 2022 Feb 17.
5
A Process Chemistry Benchmark for sp-sp Cross Couplings.sp-sp 交叉偶联反应的过程化学基准
J Org Chem. 2021 Aug 6;86(15):10380-10396. doi: 10.1021/acs.joc.1c01073. Epub 2021 Jul 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验