Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
ACS Nano. 2023 Sep 12;17(17):16840-16853. doi: 10.1021/acsnano.3c03724. Epub 2023 Aug 21.
Glioblastoma multiforme (GBM) is the most common malignant brain tumor with low survival, primarily due to the blood-brain barrier (BBB) and high infiltration. Upconversion nanoparticles (UCNPs)-based near-infrared (NIR) phototherapy with deep penetration is a promising therapy method against glioma but faces low photoenergy utilization that is induced by spectral mismatch and single-site Förster resonance energy transfer (FRET). Herein, we designed a brain-targeting NIR theranostic system with a dual-site FRET route and superior spectral matching to maximize energy utilization for synergistic photodynamic and photothermal therapy of glioma. The system was fabricated by Tm-doped UCNPs, zinc tetraphenylporphyrin (ZnTPP), and copper sulfide (CuS) nanoparticles under multioptimized modulation. First, the Tm-doping ratio was precisely adjusted to improve the relative emission intensity at 475 nm of UCNPs (11.5-fold). Moreover, the J-aggregate of ZnTPP increased the absorption at 475 nm (163.5-fold) of monomer; both together optimize the FRET matching between UCNPs and porphyrin for effective NIR photodynamic therapy. Simultaneously, the emission at 800 nm was utilized to magnify the photothermal effect of CuS nanoparticles for photothermal therapy via the second FRET route. After being modified by a brain-targeted peptide, the system efficiently triggers the synergistic phototherapy ablation of glioma cells and significantly prolongs the survival of orthotopic glioma-bearing mice after traversing the BBB and targeting glioma. This success of advanced spectral modulation and dual-site FRET strategy may inspire more strategies to maximize the photoenergy utilization of UCNPs for brain diseases.
多形性胶质母细胞瘤(GBM)是最常见的恶性脑肿瘤,生存率低,主要原因是血脑屏障(BBB)和高浸润性。上转换纳米粒子(UCNPs)基近红外(NIR)光疗具有深部穿透性,是一种很有前途的治疗脑肿瘤的方法,但面临着由于光谱不匹配和单一位点Förster 共振能量转移(FRET)引起的光能利用率低的问题。在此,我们设计了一种具有双 FRET 途径和优异光谱匹配的脑靶向 NIR 治疗系统,以最大限度地提高能量利用效率,实现协同光动力和光热治疗脑肿瘤。该系统是通过 Tm 掺杂的 UCNPs、锌四苯基卟啉(ZnTPP)和硫化铜(CuS)纳米粒子在多优化调制下构建的。首先,精确调整 Tm 掺杂比以提高 UCNPs 在 475nm 处的相对发射强度(11.5 倍)。此外,ZnTPP 的 J-聚集体增加了单体在 475nm 处的吸收(163.5 倍);两者共同优化了 UCNPs 和卟啉之间的 FRET 匹配,以实现有效的 NIR 光动力治疗。同时,800nm 的发射被用于通过第二 FRET 途径放大 CuS 纳米粒子的光热效应,用于光热治疗。经脑靶向肽修饰后,该系统可有效地触发协同光疗消融脑胶质瘤细胞,并在穿透血脑屏障和靶向脑肿瘤后显著延长荷瘤小鼠的存活时间。这种先进的光谱调制和双 FRET 策略的成功可能会激发更多的策略,以最大限度地提高 UCNPs 的光能利用率,用于脑部疾病。
ACS Appl Mater Interfaces. 2024-7-17
Mater Today Bio. 2025-8-13
Theranostics. 2025-7-25
Asian J Pharm Sci. 2024-10
Biomater Res. 2023-11-24