Department of Physics, Washington University, St. Louis, MO, 63130, USA.
Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA.
Nat Commun. 2023 Jun 6;14(1):3299. doi: 10.1038/s41467-023-39115-y.
Optically active spin defects in van der Waals materials are promising platforms for modern quantum technologies. Here we investigate the coherent dynamics of strongly interacting ensembles of negatively charged boron-vacancy ([Formula: see text]) centers in hexagonal boron nitride (hBN) with varying defect density. By employing advanced dynamical decoupling sequences to selectively isolate different dephasing sources, we observe more than 5-fold improvement in the measured coherence times across all hBN samples. Crucially, we identify that the many-body interaction within the [Formula: see text] ensemble plays a substantial role in the coherent dynamics, which is then used to directly estimate the concentration of [Formula: see text]. We find that at high ion implantation dosage, only a small portion of the created boron vacancy defects are in the desired negatively charged state. Finally, we investigate the spin response of [Formula: see text] to the local charged defects induced electric field signals, and estimate its ground state transverse electric field susceptibility. Our results provide new insights on the spin and charge properties of [Formula: see text], which are important for future use of defects in hBN as quantum sensors and simulators.
在范德瓦尔斯材料中,手性自旋缺陷是现代量子技术的理想平台。在这里,我们研究了具有不同缺陷密度的六方氮化硼(hBN)中带负电荷的硼空位([Formula: see text])中心强相互作用体系的相干动力学。通过采用先进的动态去耦序列来选择性地隔离不同的退相源,我们在所有 hBN 样品中观察到测量相干时间提高了 5 倍以上。至关重要的是,我们确定了 [Formula: see text] 体系中的多体相互作用在相干动力学中起着重要作用,然后可以直接估计 [Formula: see text] 的浓度。我们发现,在高离子注入剂量下,只有一小部分创建的硼空位缺陷处于所需的带负电荷状态。最后,我们研究了 [Formula: see text] 对局部带电缺陷诱导的电场信号的自旋响应,并估计了其基态横向电场磁化率。我们的研究结果为 hBN 中缺陷作为量子传感器和模拟器的未来应用提供了关于 [Formula: see text] 的自旋和电荷性质的新见解。