Suppr超能文献

水稻响应热胁迫的调控网络及其在育种策略中的潜在应用

Regulatory network of rice in response to heat stress and its potential application in breeding strategy.

作者信息

Ma Zemin, Lv Jun, Wu Wenhua, Fu Dong, Lü Shiyou, Ke Yinggen, Yang Pingfang

机构信息

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China.

Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000 China.

出版信息

Mol Breed. 2023 Aug 21;43(9):68. doi: 10.1007/s11032-023-01415-y. eCollection 2023 Sep.

Abstract

The rapid development of global industrialization has led to serious environmental problems, among which global warming has become one of the major concerns. The gradual rise in global temperature resulted in the loss of food production, and hence a serious threat to world food security. Rice is the main crop for approximately half of the world's population, and its geographic distribution, yield, and quality are frequently reduced due to elevated temperature stress, and breeding rice varieties with tolerance to heat stress is of immense significance. Therefore, it is critical to study the molecular mechanism of rice in response to heat stress. In the last decades, large amounts of studies have been conducted focusing on rice heat stress response. Valuable information has been obtained, which not only sheds light on the regulatory network underlying this physiological process but also provides some candidate genes for improved heat tolerance breeding in rice. In this review, we summarized the studies in this field. Hopefully, it will provide some new insights into the mechanisms of rice under high temperature stress and clues for future engineering breeding of improved heat tolerance rice.

摘要

全球工业化的快速发展导致了严重的环境问题,其中全球变暖已成为主要关注点之一。全球气温的逐渐上升导致粮食产量损失,从而对世界粮食安全构成严重威胁。水稻是世界上约一半人口的主要作物,由于温度胁迫升高,其地理分布、产量和品质经常下降,培育耐热胁迫的水稻品种具有极其重要的意义。因此,研究水稻对热胁迫的分子机制至关重要。在过去几十年中,针对水稻热胁迫响应开展了大量研究。已获得了有价值的信息,这不仅揭示了这一生理过程背后的调控网络,还为水稻耐热性改良育种提供了一些候选基因。在本综述中,我们总结了该领域的研究。希望它能为高温胁迫下水稻的机制提供一些新见解,并为未来耐热性改良水稻的工程育种提供线索。

相似文献

1
Regulatory network of rice in response to heat stress and its potential application in breeding strategy.
Mol Breed. 2023 Aug 21;43(9):68. doi: 10.1007/s11032-023-01415-y. eCollection 2023 Sep.
2
Genetic Research Progress: Heat Tolerance in Rice.
Int J Mol Sci. 2023 Apr 12;24(8):7140. doi: 10.3390/ijms24087140.
4
Rice yield formation under high day and night temperatures-A prerequisite to ensure future food security.
Plant Cell Environ. 2020 Jul;43(7):1595-1608. doi: 10.1111/pce.13748. Epub 2020 Mar 16.
5
TT3.1: a journey to protect chloroplasts upon heat stress.
Stress Biol. 2022 Jul 12;2(1):27. doi: 10.1007/s44154-022-00051-4.
6
Physiological and agronomical evaluation of elite rice varieties for adaptation to heat stress.
BMC Plant Biol. 2022 May 10;22(1):236. doi: 10.1186/s12870-022-03604-x.
7
Reproductive tissues-specific meta-QTLs and candidate genes for development of heat-tolerant rice cultivars.
Plant Mol Biol. 2020 Sep;104(1-2):97-112. doi: 10.1007/s11103-020-01027-6. Epub 2020 Jul 8.
8
Enhancement of Plant Productivity in the Post-Genomics Era.
Curr Genomics. 2016 Aug;17(4):295-6. doi: 10.2174/138920291704160607182507.
9
Exploiting Genic Male Sterility in Rice: From Molecular Dissection to Breeding Applications.
Front Plant Sci. 2021 Mar 2;12:629314. doi: 10.3389/fpls.2021.629314. eCollection 2021.
10
Identification of genomic regions governing moisture and heat stress tolerance employing association mapping in rice (Oryza sativa L.).
Mol Biol Rep. 2023 Feb;50(2):1499-1515. doi: 10.1007/s11033-022-08153-y. Epub 2022 Dec 12.

本文引用的文献

1
SEMI-ROLLED LEAF 10 stabilizes catalase isozyme B to regulate leaf morphology and thermotolerance in rice (Oryza sativa L.).
Plant Biotechnol J. 2023 Apr;21(4):819-838. doi: 10.1111/pbi.13999. Epub 2023 Jan 23.
2
A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance.
Science. 2022 Jun 17;376(6599):1293-1300. doi: 10.1126/science.abo5721. Epub 2022 Jun 16.
3
TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis.
Nat Plants. 2022 Jan;8(1):53-67. doi: 10.1038/s41477-021-01039-0. Epub 2021 Dec 30.
4
Two interacting ethylene response factors regulate heat stress response.
Plant Cell. 2021 Apr 17;33(2):338-357. doi: 10.1093/plcell/koaa026.
5
Plant heat stress: Concepts directing future research.
Plant Cell Environ. 2021 Jul;44(7):1992-2005. doi: 10.1111/pce.14050. Epub 2021 Apr 8.
9
Natural variations of SLG1 confer high-temperature tolerance in indica rice.
Nat Commun. 2020 Oct 28;11(1):5441. doi: 10.1038/s41467-020-19320-9.
10
Reproductive tissues-specific meta-QTLs and candidate genes for development of heat-tolerant rice cultivars.
Plant Mol Biol. 2020 Sep;104(1-2):97-112. doi: 10.1007/s11103-020-01027-6. Epub 2020 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验