Sükei Emese, de Leon-Martinez Santiago, Olmos Pablo M, Artés Antonio
Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Av. de la Universidad 30, Leganés 28911, Madrid, Spain.
Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic.
Internet Interv. 2023 Aug 8;33:100657. doi: 10.1016/j.invent.2023.100657. eCollection 2023 Sep.
Wearable devices and mobile sensors enable the real-time collection of an abundant source of physiological and behavioural data unobtrusively. Unlike traditional in-person evaluation or ecological momentary assessment (EMA) questionnaire-based approaches, these data sources open many possibilities in remote patient monitoring. However, defining robust models is challenging due to the data's noisy and frequently missing observations. This work proposes an attention-based Long Short-Term Memory (LSTM) neural network-based pipeline for predicting mobility impairment based on WHODAS 2.0 evaluation from such digital biomarkers. Furthermore, we addressed the missing observation problem by utilising hidden Markov models and the possibility of including information from unlabelled samples via transfer learning. We validated our approach using two wearable/mobile sensor data sets collected in the wild and socio-demographic information about the patients. Our results showed that in the WHODAS 2.0 mobility impairment prediction task, the proposed pipeline outperformed a prior baseline while additionally providing interpretability with attention heatmaps. Moreover, using a much smaller cohort via task transfer learning, the same model could learn to predict generalised anxiety severity accurately based on GAD-7 scores.
可穿戴设备和移动传感器能够在不引人注意的情况下实时收集丰富的生理和行为数据。与传统的面对面评估或基于生态瞬时评估(EMA)问卷的方法不同,这些数据源为远程患者监测开辟了许多可能性。然而,由于数据存在噪声且观测值经常缺失,定义稳健的模型具有挑战性。这项工作提出了一种基于注意力的长短期记忆(LSTM)神经网络管道,用于根据此类数字生物标志物的WHODAS 2.0评估来预测行动能力障碍。此外,我们通过使用隐马尔可夫模型解决了观测值缺失问题,并通过迁移学习纳入来自未标记样本信息的可能性。我们使用在自然环境中收集的两个可穿戴/移动传感器数据集以及患者的社会人口统计学信息对我们的方法进行了验证。我们的结果表明,在WHODAS 2.0行动能力障碍预测任务中,所提出的管道优于先前的基线,同时还通过注意力热图提供了可解释性。此外,通过任务迁移学习使用规模小得多的队列,同一模型可以学会根据GAD - 7评分准确预测广泛性焦虑严重程度。