Suppr超能文献

波前塑形老视矫正人工晶状体的新型光学设计与临床分类

The Novel Optical Design and Clinical Classification of a Wavefront-Shaping Presbyopia-Correcting Intraocular Lens.

作者信息

Kohnen Thomas, Berdahl John P, Hong Xin, Bala Chandra

机构信息

Department of Ophthalmology, Goethe University Frankfurt, Frankfurt am Main, Germany.

Vance Thompson Vision, Sioux Falls, SD, USA.

出版信息

Clin Ophthalmol. 2023 Aug 18;17:2449-2457. doi: 10.2147/OPTH.S400083. eCollection 2023.

Abstract

PURPOSE

To evaluate the clinical rationale of wavefront-shaping technology, describe how intraocular lenses (IOLs) using wavefront-shaping technology are differentiated from refractive or diffractive optical presbyopia-correcting designs, and describe the mode of action of this technology.

METHODS

Extended depth of focus (EDoF) IOLs are the latest class of presbyopia-correcting IOLs addressing the growing demand of patients for reduced spectacle dependence. These use various optical technologies, including diffractive designs (eg, TECNIS Symfony ZXR00 and AT LARA 29 MP) and non-diffractive designs such as small aperture (eg, IC-8 IOL and XtraFocus Pinhole Implant), spherical aberration (eg, MINI WELL Ready and LuxSmart), and wavefront shaping (eg, AcrySof IQ Vivity DFT015 and Clareon Vivity CNWET0). Despite some improvement in visual acuity at intermediate and near distances, these technologies can still be associated with increased rate of visual disturbances or poorer distance vision compared with monofocal IOLs. One way to overcome such limitations is using a wavefront-shaping optical principle.

RESULTS

Clinical data show that wavefront-shaping technology results in a continuous EDoF compared with a monofocal IOL while exhibiting a minimal halo, similar to an aspheric monofocal IOL. Clinically, this translates to a lens that has proven to exceed the American National Standards Institute/American Academy of Ophthalmology criteria for an EDoF IOL.

CONCLUSION

The novel wavefront-shaping optic technology allows patients to achieve a continuous range of vision from distance to functional near with low levels of visual disturbances comparable with aspheric monofocal IOLs.

摘要

目的

评估波前塑形技术的临床原理,描述采用波前塑形技术的人工晶状体(IOL)与屈光性或衍射性光学老视矫正设计的人工晶状体有何不同,并描述该技术的作用方式。

方法

扩展焦深(EDoF)人工晶状体是最新一类老视矫正人工晶状体,可满足患者日益增长的减少对眼镜依赖的需求。这些人工晶状体采用了各种光学技术,包括衍射设计(例如,TECNIS Symfony ZXR00和AT LARA 29 MP)以及非衍射设计,如小孔径设计(例如,IC - 8人工晶状体和XtraFocus针孔植入物)、球差设计(例如,MINI WELL Ready和LuxSmart)以及波前塑形设计(例如,AcrySof IQ Vivity DFT015和Clareon Vivity CNWET0)。尽管中距离和近距离视力有所改善,但与单焦点人工晶状体相比,这些技术仍可能与视觉干扰发生率增加或远视力较差有关。克服这些限制的一种方法是使用波前塑形光学原理。

结果

临床数据表明,与单焦点人工晶状体相比,波前塑形技术可实现连续的扩展焦深,同时产生的光晕极小,类似于非球面单焦点人工晶状体。在临床上,这意味着该晶状体已被证明超过了美国国家标准学会/美国眼科学会关于扩展焦深人工晶状体的标准。

结论

新型波前塑形光学技术使患者能够实现从远到功能性近的连续视力范围,视觉干扰水平低,与非球面单焦点人工晶状体相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b5/10443698/995a9c92be90/OPTH-17-2449-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验