Suppr超能文献

二维半导体中激子-激子湮灭的辐射抑制

Radiative suppression of exciton-exciton annihilation in a two-dimensional semiconductor.

作者信息

Sortino Luca, Gülmüs Merve, Tilmann Benjamin, de S Menezes Leonardo, Maier Stefan A

机构信息

Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany.

Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany.

出版信息

Light Sci Appl. 2023 Aug 24;12(1):202. doi: 10.1038/s41377-023-01249-5.

Abstract

Two-dimensional (2D) semiconductors possess strongly bound excitons, opening novel opportunities for engineering light-matter interaction at the nanoscale. However, their in-plane confinement leads to large non-radiative exciton-exciton annihilation (EEA) processes, setting a fundamental limit for their photonic applications. In this work, we demonstrate suppression of EEA via enhancement of light-matter interaction in hybrid 2D semiconductor-dielectric nanophotonic platforms, by coupling excitons in WS monolayers with optical Mie resonances in dielectric nanoantennas. The hybrid system reaches an intermediate light-matter coupling regime, with photoluminescence enhancement factors up to 10. Probing the exciton ultrafast dynamics reveal suppressed EEA for coupled excitons, even under high exciton densities >10 cm. We extract EEA coefficients in the order of 10, compared to 10 for uncoupled monolayers, as well as a Purcell factor of 4.5. Our results highlight engineering the photonic environment as a route to achieve higher quantum efficiencies, for low-power hybrid devices, and larger exciton densities, towards strongly correlated excitonic phases in 2D semiconductors.

摘要

二维(2D)半导体拥有强束缚激子,为在纳米尺度上设计光与物质的相互作用开辟了新机遇。然而,它们的面内限制导致了大量的非辐射激子 - 激子湮灭(EEA)过程,为其光子应用设定了一个基本限制。在这项工作中,我们通过在混合二维半导体 - 电介质纳米光子平台中增强光与物质的相互作用来证明对EEA的抑制,具体方法是将WS单分子层中的激子与电介质纳米天线中的光学米氏共振相耦合。该混合系统达到了中间光与物质耦合 regime,光致发光增强因子高达10。对激子超快动力学的探测表明,即使在激子密度>10 cm的高激子密度下,耦合激子的EEA也受到抑制。我们提取出EEA系数约为10,而未耦合的单分子层为10,同时还有4.5的珀塞尔因子。我们的结果突出了设计光子环境作为实现更高量子效率的途径,用于低功率混合器件,并实现更大的激子密度,以实现二维半导体中强关联激子相。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62bc/10449935/089eea121baf/41377_2023_1249_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验