Ilyas Talha, Lee Jonghoon, Won Okjae, Jeong Yongchae, Kim Hyongsuk
Division of Electronics and Information Engineering, Jeonbuk National University, Jeonju-si, Republic of Korea.
Core Research Institute of Intelligent Robots, Jeonbuk National University, Jeonju-si, Republic of Korea.
Front Plant Sci. 2023 Aug 9;14:1234616. doi: 10.3389/fpls.2023.1234616. eCollection 2023.
Recent developments in deep learning-based automatic weeding systems have shown promise for unmanned weed eradication. However, accurately distinguishing between crops and weeds in varying field conditions remains a challenge for these systems, as performance deteriorates when applied to new or different fields due to insignificant changes in low-level statistics and a significant gap between training and test data distributions. In this study, we propose an approach based on unsupervised domain adaptation to improve crop-weed recognition in new, unseen fields. Our system addresses this issue by learning to ignore insignificant changes in low-level statistics that cause a decline in performance when applied to new data. The proposed network includes a segmentation module that produces segmentation maps using labeled (training field) data while also minimizing entropy using unlabeled (test field) data simultaneously, and a discriminator module that maximizes the confusion between extracted features from the training and test farm samples. This module uses adversarial optimization to make the segmentation network invariant to changes in the field environment. We evaluated the proposed approach on four different unseen (test) fields and found consistent improvements in performance. These results suggest that the proposed approach can effectively handle changes in new field environments during real field inference.
基于深度学习的自动除草系统的最新进展显示出在无人除草方面的潜力。然而,在不同的田间条件下准确区分作物和杂草对这些系统来说仍然是一个挑战,因为当应用于新的或不同的田地时,由于低层次统计数据的微小变化以及训练数据和测试数据分布之间的显著差距,系统性能会下降。在本研究中,我们提出了一种基于无监督域适应的方法,以提高在新的、未见过的田地里对作物和杂草的识别能力。我们的系统通过学习忽略低层次统计数据中的微小变化来解决这个问题,这些变化在应用于新数据时会导致性能下降。所提出的网络包括一个分割模块,该模块使用标记的(训练田地)数据生成分割图,同时使用未标记的(测试田地)数据最小化熵,以及一个判别器模块,该模块最大化从训练农场样本和测试农场样本中提取的特征之间的混淆度。该模块使用对抗优化使分割网络对田间环境的变化具有不变性。我们在四个不同的未见过的(测试)田地上评估了所提出的方法,发现性能有持续的提升。这些结果表明,所提出的方法在实际田间推理过程中能够有效地应对新田间环境的变化。