Suppr超能文献

一种用于结肠和肺部组织病理学图像中肿瘤自动评估的新型异质卷积神经网络。

A Novel Heteromorphous Convolutional Neural Network for Automated Assessment of Tumors in Colon and Lung Histopathology Images.

作者信息

Iqbal Saeed, Qureshi Adnan N, Alhussein Musaed, Aurangzeb Khursheed, Kadry Seifedine

机构信息

Department of Computer Science, Faculty of Information Technology & Computer Science, University of Central Punjab, Lahore 54000, Pakistan.

Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia.

出版信息

Biomimetics (Basel). 2023 Aug 16;8(4):370. doi: 10.3390/biomimetics8040370.

Abstract

The automated assessment of tumors in medical image analysis encounters challenges due to the resemblance of colon and lung tumors to non-mitotic nuclei and their heteromorphic characteristics. An accurate assessment of tumor nuclei presence is crucial for determining tumor aggressiveness and grading. This paper proposes a new method called ColonNet, a heteromorphous convolutional neural network (CNN) with a feature grafting methodology categorically configured for analyzing mitotic nuclei in colon and lung histopathology images. The ColonNet model consists of two stages: first, identifying potential mitotic patches within the histopathological imaging areas, and second, categorizing these patches into squamous cell carcinomas, adenocarcinomas (lung), benign (lung), benign (colon), and adenocarcinomas (colon) based on the model's guidelines. We develop and employ our deep CNNs, each capturing distinct structural, textural, and morphological properties of tumor nuclei, to construct the heteromorphous deep CNN. The execution of the proposed ColonNet model is analyzed by its comparison with state-of-the-art CNNs. The results demonstrate that our model surpasses others on the test set, achieving an impressive F1 score of 0.96, sensitivity and specificity of 0.95, and an area under the accuracy curve of 0.95. These outcomes underscore our hybrid model's superior performance, excellent generalization, and accuracy, highlighting its potential as a valuable tool to support pathologists in diagnostic activities.

摘要

在医学图像分析中,由于结肠和肺肿瘤与非有丝分裂细胞核相似且具有异形特征,对肿瘤进行自动评估面临挑战。准确评估肿瘤细胞核的存在对于确定肿瘤的侵袭性和分级至关重要。本文提出了一种名为ColonNet的新方法,这是一种异形卷积神经网络(CNN),采用特征嫁接方法进行分类配置,用于分析结肠和肺组织病理学图像中的有丝分裂细胞核。ColonNet模型由两个阶段组成:第一,在组织病理学成像区域内识别潜在的有丝分裂斑块;第二,根据模型的指导方针,将这些斑块分类为鳞状细胞癌、腺癌(肺)、良性(肺)、良性(结肠)和腺癌(结肠)。我们开发并应用了深度CNN,每个CNN捕捉肿瘤细胞核不同的结构、纹理和形态特征,以构建异形深度CNN。通过与最先进的CNN进行比较,分析了所提出的ColonNet模型的执行情况。结果表明,我们的模型在测试集上优于其他模型,F1分数达到0.96,灵敏度和特异性为0.95,准确率曲线下面积为0.95。这些结果强调了我们的混合模型的卓越性能、出色的泛化能力和准确性,突出了其作为支持病理学家进行诊断活动的宝贵工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a68c/10452605/d5aa0bcb5718/biomimetics-08-00370-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验