Suppr超能文献

用于多类别结直肠癌组织病理学的高级深度学习:整合迁移学习和集成方法。

Advanced deep learning for multi-class colorectal cancer histopathology: integrating transfer learning and ensemble methods.

作者信息

Ke Qi, Yap Wun-She, Tee Yee Kai, Hum Yan Chai, Zheng Hua, Gan Yu-Jian

机构信息

School of Big Data and Artificial Intelligence, Guangxi University of Finance and Economics, Nanning, China.

Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia.

出版信息

Quant Imaging Med Surg. 2025 Mar 3;15(3):2329-2346. doi: 10.21037/qims-24-1641. Epub 2025 Feb 26.

Abstract

BACKGROUND

Cancer is a major global health threat, constantly endangering people's well-being and lives. The application of deep learning in the diagnosis of colorectal cancer can improve early detection rates, thereby significantly reducing the incidence and mortality of colorectal cancer patients. Our study aims to optimize the performance of deep learning model in the classification of colorectal cancer histopathological images to assist pathologists in improving diagnostic accuracy.

METHODS

In this study, we developed ensemble models based on deep convolutional neural networks (CNNs) for the classification of colorectal cancer histopathology images. The method first involved data preprocessing techniques such as patch cropping, stain normalization, data augmentation and data balancing on histopathology images with different magnifications. Subsequently, the CNN models were fine-tuned and pre-trained using transfer learning methods, and models with superior performance were then selected as the base classifiers to build the ensemble models. Finally, the ensemble models were used to predict the final classification outcomes. To evaluate the effectiveness of the proposed models, we tested their performance on a publicly available colorectal cancer dataset, Enteroscope Biopsy Histopathological Hematoxylin and Eosin Image (EBHI) dataset.

RESULTS

Experimental results show that the proposed ensemble model, composed of the top five classifiers, achieved the promising classification accuracy across sub-databases with four different magnification factors. Specifically, on the 40× magnification subset, the highest classification accuracy reached 99.11%; on the 100× magnification subset, it reached 99.36%; on the 200× magnification subset, it was 99.29%; and on the 400× magnification subset, it was 98.96%. Additionally, the proposed ensemble model achieved exceptional results in recall, precision, and F1 score.

CONCLUSIONS

The proposed ensemble models obtained good classification performance on the EBHI dataset of histopathological images for colorectal cancer. The findings of this study may contribute to the early detection and accurate classification of colorectal cancer, thereby aiding in more precise diagnostic analysis of colorectal cancer.

摘要

背景

癌症是全球主要的健康威胁,不断危及人们的幸福和生命。深度学习在结直肠癌诊断中的应用可以提高早期检测率,从而显著降低结直肠癌患者的发病率和死亡率。我们的研究旨在优化深度学习模型在结直肠癌组织病理学图像分类中的性能,以帮助病理学家提高诊断准确性。

方法

在本研究中,我们开发了基于深度卷积神经网络(CNN)的集成模型,用于结直肠癌组织病理学图像的分类。该方法首先涉及数据预处理技术,如对不同放大倍数的组织病理学图像进行图像块裁剪、染色归一化、数据增强和数据平衡。随后,使用迁移学习方法对CNN模型进行微调与预训练,然后选择性能优越的模型作为基础分类器来构建集成模型。最后,使用集成模型预测最终分类结果。为了评估所提出模型的有效性,我们在一个公开可用的结直肠癌数据集——肠镜活检组织病理学苏木精和伊红图像(EBHI)数据集上测试了它们的性能。

结果

实验结果表明,由前五个分类器组成的所提出的集成模型在具有四个不同放大倍数因子的子数据库中实现了有前景的分类准确率。具体而言,在40倍放大倍数子集上,最高分类准确率达到99.11%;在100倍放大倍数子集上,达到99.36%;在200倍放大倍数子集上,为99.29%;在400倍放大倍数子集上,为98.96%。此外,所提出的集成模型在召回率、精确率和F1分数方面取得了优异的结果。

结论

所提出的集成模型在结直肠癌组织病理学图像的EBHI数据集上获得了良好的分类性能。本研究结果可能有助于结直肠癌的早期检测和准确分类,从而有助于对结直肠癌进行更精确的诊断分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff0/11948397/4fb9f181b4b2/qims-15-03-2329-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验