Suppr超能文献

仿生中尺度和纳米尺度表面形貌对计算流体动力学植入模型中血液和蛋白质募集的影响

The Effects of a Biomimetic Hybrid Meso- and Nano-Scale Surface Topography on Blood and Protein Recruitment in a Computational Fluid Dynamics Implant Model.

作者信息

Kitajima Hiroaki, Hirota Makoto, Osawa Kohei, Iwai Toshinori, Mitsudo Kenji, Saruta Juri, Ogawa Takahiro

机构信息

Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA.

Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA.

出版信息

Biomimetics (Basel). 2023 Aug 18;8(4):376. doi: 10.3390/biomimetics8040376.

Abstract

The mechanisms underlying bone-implant integration, or osseointegration, are still incompletely understood, in particular how blood and proteins are recruited to implant surfaces. The objective of this study was to visualize and quantify the flow of blood and the model protein fibrinogen using a computational fluid dynamics (CFD) implant model. Implants with screws were designed with three different surface topographies: (1) amorphous, (2) nano-trabecular, and (3) hybrid meso-spikes and nano-trabeculae. The implant with nano-topography recruited more blood and fibrinogen to the implant interface than the amorphous implant. Implants with hybrid topography further increased recruitment, with particularly efficient recruitment from the thread area to the interface. Blood movement significantly slowed at the implant interface compared with the thread area for all implants. The blood velocity at the interface was 3- and 4-fold lower for the hybrid topography compared with the nano-topography and amorphous surfaces, respectively. Thus, this study for the first time provides insights into how different implant surfaces regulate blood dynamics and the potential advantages of surface texturization in blood and protein recruitment and retention. In particular, co-texturization with a hybrid meso- and nano-topography created the most favorable microenvironment. The established CFD model is simple, low-cost, and expected to be useful for a wide range of studies designing and optimizing implants at the macro and micro levels.

摘要

骨-种植体结合,即骨整合的潜在机制仍未完全明确,尤其是血液和蛋白质如何被募集到种植体表面。本研究的目的是使用计算流体动力学(CFD)种植体模型来可视化和量化血液流动以及模型蛋白纤维蛋白原。带有螺钉的种植体设计了三种不同的表面形貌:(1)无定形,(2)纳米小梁,以及(3)混合中尺度尖峰和纳米小梁。与无定形种植体相比,具有纳米形貌的种植体将更多的血液和纤维蛋白原募集到种植体界面。具有混合形貌的种植体进一步增加了募集,从螺纹区域到界面的募集尤为高效。与所有种植体的螺纹区域相比,在种植体界面处血液流动显著减慢。与纳米形貌和无定形表面相比,混合形貌在界面处的血液流速分别低3倍和4倍。因此,本研究首次深入了解了不同种植体表面如何调节血液动力学,以及表面纹理化在血液和蛋白质募集及保留方面的潜在优势。特别是,中尺度和纳米混合形貌的共纹理化创造了最有利的微环境。所建立的CFD模型简单、成本低,有望用于广泛的宏观和微观层面的种植体设计和优化研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99af/10452410/c9821a4685f5/biomimetics-08-00376-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验