Suppr超能文献

基于鲸鱼优化算法-双向长短期记忆网络模型的新型冠状病毒肺炎预测

Prediction of COVID-19 Using a WOA-BILSTM Model.

作者信息

Yang Xinyue, Li Shuangyin

机构信息

School of Computer Science, South China Normal University, Guangzhou 510631, China.

出版信息

Bioengineering (Basel). 2023 Jul 25;10(8):883. doi: 10.3390/bioengineering10080883.

Abstract

The COVID-19 pandemic has had a significant impact on the world, highlighting the importance of the accurate prediction of infection numbers. Given that the transmission of SARS-CoV-2 is influenced by temporal and spatial factors, numerous researchers have employed neural networks to address this issue. Accordingly, we propose a whale optimization algorithm-bidirectional long short-term memory (WOA-BILSTM) model for predicting cumulative confirmed cases. In the model, we initially input regional epidemic data, including cumulative confirmed, cured, and death cases, as well as existing cases and daily confirmed, cured, and death cases. Subsequently, we utilized the BILSTM as the base model and incorporated WOA to optimize the specific parameters. Our experiments employed epidemic data from Beijing, Guangdong, and Chongqing in China. We then compared our model with LSTM, BILSTM, GRU, CNN, CNN-LSTM, RNN-GRU, DES, ARIMA, linear, Lasso, and SVM models. The outcomes demonstrated that our model outperformed these alternatives and retained the highest accuracy in complex scenarios. In addition, we also used Bayesian and grid search algorithms to optimize the BILSTM model. The results showed that the WOA model converged fast and found the optimal solution more easily. Thus, our model can assist governments in developing more effective control measures.

摘要

新冠疫情对全球产生了重大影响,凸显了准确预测感染人数的重要性。鉴于严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的传播受时空因素影响,众多研究人员已采用神经网络来解决这一问题。因此,我们提出一种用于预测累计确诊病例的鲸鱼优化算法-双向长短期记忆(WOA-BILSTM)模型。在该模型中,我们首先输入区域疫情数据,包括累计确诊、治愈和死亡病例,以及现有病例和每日确诊、治愈和死亡病例。随后,我们将双向长短期记忆网络(BILSTM)用作基础模型,并引入鲸鱼优化算法(WOA)来优化特定参数。我们的实验采用了中国北京、广东和重庆的疫情数据。然后,我们将我们的模型与长短期记忆网络(LSTM)、双向长短期记忆网络(BILSTM)、门控循环单元(GRU)、卷积神经网络(CNN)、卷积神经网络-长短期记忆网络(CNN-LSTM)、循环神经网络-门控循环单元(RNN-GRU)、差分进化算法(DES)、自回归整合移动平均模型(ARIMA)、线性模型、套索回归(Lasso)和支持向量机(SVM)模型进行了比较。结果表明,我们的模型优于这些替代模型,并且在复杂场景中保持了最高的准确率。此外,我们还使用贝叶斯算法和网格搜索算法对双向长短期记忆网络(BILSTM)模型进行了优化。结果表明,鲸鱼优化算法(WOA)模型收敛速度快,更容易找到最优解。因此,我们的模型可以帮助政府制定更有效的防控措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/927d/10451184/1133a3a94311/bioengineering-10-00883-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验