Mohimont Lucas, Chemchem Amine, Alin François, Krajecki Michaël, Steffenel Luiz Angelo
LICIIS Laboratory - LRC CEA DIGIT, Université de Reims Champagne Ardenne, 51097 Reims, France.
ATOS - Pole Intelligence Artificielle, Rue du Mas de Verchant, 34000 Montpellier, France.
Appl Intell (Dordr). 2021;51(12):8784-8809. doi: 10.1007/s10489-021-02359-6. Epub 2021 Apr 14.
This paper focus on multiple CNN-based (Convolutional Neural Network) models for COVID-19 forecast developed by our research team during the first French lockdown. In an effort to understand and predict both the epidemic evolution and the impacts of this disease, we conceived models for multiple indicators: daily or cumulative confirmed cases, hospitalizations, hospitalizations with artificial ventilation, recoveries, and deaths. In spite of the limited data available when the lockdown was declared, we achieved good short-term performances at the national level with a classical CNN for hospitalizations, leading to its integration into a hospitalizations surveillance tool after the lockdown ended. Also, A Temporal Convolutional Network with quantile regression successfully predicted multiple COVID-19 indicators at the national level by using data available at different scales (worldwide, national, regional). The accuracy of the regional predictions was improved by using a hierarchical pre-training scheme, and an efficient parallel implementation allows for quick training of multiple regional models. The resulting set of models represent a powerful tool for short-term COVID-19 forecasting at different geographical scales, complementing the toolboxes used by health organizations in France.
本文聚焦于我们的研究团队在法国首次封城期间开发的基于卷积神经网络(CNN)的多种新冠疫情预测模型。为了理解和预测疫情的发展以及这种疾病的影响,我们针对多个指标构建了模型:每日或累计确诊病例、住院人数、使用人工通气的住院人数、康复人数和死亡人数。尽管在宣布封城时可用数据有限,但我们使用经典的卷积神经网络在国家层面实现了良好的短期住院人数预测表现,在封城结束后该模型被整合到住院人数监测工具中。此外,一个带有分位数回归的时间卷积网络通过使用不同规模(全球、国家、地区)的数据成功预测了国家层面的多个新冠疫情指标。通过使用分层预训练方案提高了区域预测的准确性,并且高效的并行实现允许快速训练多个区域模型。由此产生的一组模型是在不同地理尺度上进行新冠疫情短期预测的有力工具,对法国卫生组织使用的工具箱起到了补充作用。