Suppr超能文献

tRNA 特异性腺苷脱氨酶(tRNA-Specific Adenosine Deaminase)在 中是可有可无的。

, the tRNA-Specific Adenosine Deaminase, Is Dispensable in .

机构信息

Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba 271-8510, Japan.

Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.

出版信息

Genes (Basel). 2023 Jul 25;14(8):1515. doi: 10.3390/genes14081515.

Abstract

Post-transcriptional modifications of tRNA are crucial for their core function. The inosine (I; 6-deaminated adenosine) at the first position in the anticodon of tRNA(ICG) modulates the decoding capability and is generally considered essential for reading CGU, CGC, and CGA codons in eubacteria. We report here that the gene encodes tRNA-specific adenosine deaminase and is non-essential for viability. A β-galactosidase reporter assay revealed that the translational activity of CGN codons was not impaired in the -deletion mutant. Furthermore, tRNA(CCG) responsible for decoding the CGG codon was dispensable, even in the presence or absence of . These results strongly suggest that tRNA with either the anticodon ICG or ACG has an intrinsic ability to recognize all four CGN codons, providing a fundamental concept of non-canonical wobbling mediated by adenosine and inosine nucleotides in the anticodon. This is the first example of the four-way wobbling by inosine nucleotide in bacterial cells. On the other hand, the absence of inosine modification induced +1 frameshifting, especially at the CGA codon. Additionally, the deletion affected growth and competency. Therefore, the inosine modification is beneficial for translational fidelity and proper growth-phase control, and that is why has been actually conserved in .

摘要

tRNA 的转录后修饰对于其核心功能至关重要。tRNA(ICG)反密码子第一位的肌苷(I;脱氨酶腺苷)调节解码能力,通常被认为是细菌中读取 CGU、CGC 和 CGA 密码子所必需的。我们在这里报告说,基因编码 tRNA 特异性腺苷脱氨酶,对生存能力并非必需。β-半乳糖苷酶报告基因测定表明,CGN 密码子的翻译活性在缺失突变体中没有受损。此外,负责解码 CGG 密码子的 tRNA(CCG)即使在存在或不存在的情况下也是可有可无的。这些结果强烈表明,具有反密码子 ICG 或 ACG 的 tRNA 具有内在能力来识别所有四个 CGN 密码子,为反密码子中腺苷和肌苷核苷酸介导的非经典摆动提供了一个基本概念。这是细菌细胞中肌苷核苷酸四向摆动的第一个例子。另一方面,肌苷修饰的缺失诱导+1 移码,特别是在 CGA 密码子上。此外,缺失会影响生长和转化能力。因此,肌苷修饰有利于翻译保真度和适当的生长阶段控制,这就是为什么在实际上被保守的原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3eca/10454642/529fa5e72c84/genes-14-01515-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验