Suppr超能文献

半自动三维胎儿脑生物测量的临床方法——比较两种诊断工具5DCNS+和SonoCNS的优缺点

A Clinical Approach to Semiautomated Three-Dimensional Fetal Brain Biometry-Comparing the Strengths and Weaknesses of Two Diagnostic Tools: 5DCNS+ and SonoCNS.

作者信息

Gembicki Michael, Welp Amrei, Scharf Jann Lennard, Dracopoulos Christoph, Weichert Jan

机构信息

Department of Gynecology & Obstetrics, Division of Prenatal Medicine, University Hospital of Schleswig-Holstein, Campus Luebeck, 23538 Luebeck, Germany.

出版信息

J Clin Med. 2023 Aug 16;12(16):5334. doi: 10.3390/jcm12165334.

Abstract

(1) Objective: We aimed to evaluate the accuracy and efficacy of AI-assisted biometric measurements of the fetal central nervous system (CNS) by comparing two semiautomatic postprocessing tools. We further aimed to discuss the additional value of semiautomatically generated sagittal and coronal planes of the CNS. (2) Methods: Three-dimensional (3D) volumes were analyzed with two semiautomatic software tools, 5DCNS+™ and SonoCNS™. The application of 5DCNS+™ results in nine planes (axial, coronal and sagittal) displayed in a single template; SonoCNS™ depicts three axial cutting sections. The tools were compared regarding automatic biometric measurement accuracy. (3) Results: A total of 129 fetuses were included for final analysis. Our data indicate that, in terms of the biometric quantification of head circumference (HC), biparietal diameter (BPD), transcerebellar diameter (TCD) and cisterna magna (CM), the accuracy of SonoCNS™ was higher with respect to the manual measurement of an experienced examiner compared to 5DCNS+™, whereas it was the other way around regarding the diameter of the posterior horn of the lateral ventricle (Vp). The inclusion of four orthogonal coronal views in 5DCNS+™ gives valuable information regarding spatial arrangements, particularly of midline structures. (4) Conclusions: Both tools were able to ease assessment of the intracranial anatomy, highlighting the additional value of automated algorithms in clinical use. SonoCNS™ showed a superior accuracy of plane reconstruction and biometry, but volume reconstruction using 5DCNS+™ provided more detailed information, which is needed for an entire neurosonogram as suggested by international guidelines.

摘要

(1) 目的:我们旨在通过比较两种半自动后处理工具,评估人工智能辅助的胎儿中枢神经系统(CNS)生物特征测量的准确性和有效性。我们还旨在讨论半自动生成的CNS矢状面和冠状面的附加价值。(2) 方法:使用两种半自动软件工具5DCNS+™ 和SonoCNS™ 分析三维(3D)容积。应用5DCNS+™ 可在单个模板中显示九个平面(轴位、冠状位和矢状位);SonoCNS™ 描绘三个轴位切割平面。比较这两种工具在自动生物特征测量准确性方面的差异。(3) 结果:共纳入129例胎儿进行最终分析。我们的数据表明,在头围(HC)、双顶径(BPD)、小脑横径(TCD)和枕大池(CM)的生物特征量化方面,与5DCNS+™ 相比,SonoCNS™ 在有经验的检查者手动测量方面准确性更高,而在侧脑室后角(Vp)直径方面则相反。5DCNS+™ 中包含的四个正交冠状视图提供了有关空间排列的有价值信息,特别是中线结构的信息。(4) 结论:两种工具都能够简化颅内解剖结构的评估,突出了自动算法在临床应用中的附加价值。SonoCNS™ 在平面重建和生物测量方面显示出更高的准确性,但使用5DCNS+™ 进行容积重建提供了更详细的信息,这是国际指南建议的完整神经超声检查所需要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba95/10455237/3af7f5e1cce2/jcm-12-05334-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验