Suppr超能文献

在牙齿发育不全诊断中使用迁移学习与不同分类器的评估。

Assessment of using transfer learning with different classifiers in hypodontia diagnosis.

作者信息

Uyar Tansel, Uyar Didem Sakaryalı

机构信息

Biomedical Engineering Department, Başkent University, 06810, Ankara, Turkey.

Pediatric Dentistry Department, Faculty of Dentistry, Başkent University, 06490, Ankara, Turkey.

出版信息

BMC Oral Health. 2025 Jan 15;25(1):68. doi: 10.1186/s12903-025-05451-2.

Abstract

BACKGROUND

Hypodontia is the absence of one or more teeth in the primary or permanent dentition during development, and radiographic imaging is the most common method of diagnosis. However, in recent years, artificial intelligence-based decision support systems have been employed to make highly accurate diagnoses. The aim of this study was to classify single premolar agenesis, multiple premolar agenesis, and without tooth agenesis using various artificial intelligence approaches.

METHODS

One thousand sixty-eight panoramic radiographs from pediatric patients aged between 6 and 12 years without systemic disease were sorted into three separate classes: single premolar agenesis (n = 336), multiple premolar agenesis (n = 324), and without tooth agenesis (n = 408). Pretrained convolutional neural network models (AlexNet, DarkNet-19, DarkNet-53, DenseNet-201, EfficientNet, GoogLeNet, InceptionV3, IncResV2, MobileNetV2, NasNet-Mobile, Places365, ResNet-18, ResNet-50, ResNet-101, ShuffleNet, SqueezeNet, VGG-16, VGG-19, and Xception) were used for training with the fine-tuning method and different machine learning classifiers (decision trees, discriminant analysis, logistic regression, naive Bayes, support vector machines, nearest neighbor, ensemble method, and artificial neural network). The dataset was divided into 80% for training and 20% for testing. Performance was evaluated via accuracy, recall, precision, F1-score, specificity and area under the curve (AUC) parameters.

RESULTS

All of the data were classified via a VGG-19 model with a bilayered neural network classifier, which achieved 95.63% accuracy, 93.26% precision, 93.34% recall, 96.73% specificity, 93.25% F1-score and 95.03% AUC and was identified as the most successful model. The accuracy values for this model were distributed as follows: 96.72% for without tooth agenesis, 95.79% for multiple premolar agenesis, and 94.39% for single premolar agenesis.

CONCLUSIONS

Successful results of pretrained models have been demonstrated for the radiographic diagnosis of hypodontia in pediatric patients. It is expected that artificial intelligence approaches will facilitate the diagnosis of hypodontia.

摘要

背景

牙缺失是指在发育过程中乳牙列或恒牙列中一颗或多颗牙齿缺失,而影像学检查是最常用的诊断方法。然而,近年来,基于人工智能的决策支持系统已被用于进行高度准确的诊断。本研究的目的是使用各种人工智能方法对单个前磨牙缺失、多个前磨牙缺失和无牙缺失进行分类。

方法

将1068例年龄在6至12岁、无全身疾病的儿科患者的全景X线片分为三个不同类别:单个前磨牙缺失(n = 336)、多个前磨牙缺失(n = 324)和无牙缺失(n = 408)。使用预训练的卷积神经网络模型(AlexNet、DarkNet-19、DarkNet-53、DenseNet-201、EfficientNet、GoogLeNet、InceptionV3、IncResV2、MobileNetV2、NasNet-Mobile、Places365、ResNet-18、ResNet-50、ResNet-101、ShuffleNet、SqueezeNet、VGG-16、VGG-19和Xception)通过微调方法进行训练,并使用不同的机器学习分类器(决策树、判别分析、逻辑回归、朴素贝叶斯、支持向量机、最近邻、集成方法和人工神经网络)。数据集分为80%用于训练,20%用于测试。通过准确率、召回率、精确率、F1分数、特异性和曲线下面积(AUC)参数评估性能。

结果

所有数据均通过具有双层神经网络分类器的VGG-19模型进行分类,该模型的准确率为95.63%,精确率为93.26%,召回率为93.34%,特异性为96.73%,F1分数为93.25%,AUC为95.03%,被确定为最成功的模型。该模型的准确率值分布如下:无牙缺失为96.72%,多个前磨牙缺失为95.79%,单个前磨牙缺失为94.39%。

结论

已证明预训练模型在儿科患者牙缺失的影像学诊断中取得了成功结果。预计人工智能方法将有助于牙缺失的诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c979/11734474/ca82b9b8993d/12903_2025_5451_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验