Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.
Utrecht University Faculty of Science, Department of Biology, Theoretical Biology and Bioinformatics Utrecht, Utrecht, The Netherlands.
Nucleic Acids Res. 2023 Oct 13;51(18):10001-10010. doi: 10.1093/nar/gkad696.
Through their aminoacylation reactions, aminoacyl tRNA-synthetases (aaRS) establish the rules of the genetic code throughout all of nature. During their long evolution in eukaryotes, additional domains and splice variants were added to what is commonly a homodimeric or monomeric structure. These changes confer orthogonal functions in cellular activities that have recently been uncovered. An unusual exception to the familiar architecture of aaRSs is the heterodimeric metazoan mitochondrial SerRS. In contrast to domain additions or alternative splicing, here we show that heterodimeric metazoan mitochondrial SerRS arose from its homodimeric ancestor not by domain additions, but rather by collapse of an entire domain (in one subunit) and an active site ablation (in the other). The collapse/ablation retains aminoacylation activity while creating a new surface, which is necessary for its orthogonal function. The results highlight a new paradigm for repurposing a member of the ancient tRNA synthetase family.
通过它们的氨酰化反应,氨酰-tRNA 合成酶(aaRS)在自然界中建立了遗传密码的规则。在真核生物的漫长进化过程中,除了常见的同源二聚体或单体结构外,还添加了额外的结构域和剪接变体。这些变化赋予了细胞活动中的正交功能,这些功能最近才被揭示出来。aaRS 结构的一个不寻常的例外是异源二聚体动物线粒体丝氨酸 tRNA 合成酶。与结构域添加或选择性剪接不同,我们在这里表明,异源二聚体动物线粒体丝氨酸 tRNA 合成酶不是通过结构域添加,而是通过整个结构域(在一个亚基中)的崩溃和活性位点的消融(在另一个亚基中),从其同源二聚体祖先中产生。崩溃/消融保留了氨酰化活性,同时创造了一个新的表面,这对于其正交功能是必要的。这些结果突出了一种新的范例,即重新利用古老的 tRNA 合成酶家族的成员。