Suppr超能文献

通过呼出气体中挥发性生物标志物分析利用光吸收光谱进行糖尿病无创诊断和监测。

Diabetes noninvasive diagnostics and monitoring through volatile biomarkers analysis in the exhaled breath using optical absorption spectroscopy.

机构信息

Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia.

Laboratory for Remote Sensing of the Environment, V.E. Zuev Institute of Atmospheric Optics SB RAS, Tomsk, Russia.

出版信息

J Biophotonics. 2023 Dec;16(12):e202300198. doi: 10.1002/jbio.202300198. Epub 2023 Sep 9.

Abstract

The review is aimed on the analysis the abilities of noninvasive diagnostics and monitoring of diabetes mellitus (DM) and DM-associated complications through volatile molecular biomarkers detection in the exhaled breath. The specific biochemical reactions in the body of DM patients and their associations with volatile molecular biomarkers in the breath are considered. The applications of optical spectroscopy methods, including UV, IR, and terahertz spectroscopy for DM-associated volatile molecular biomarkers measurements, are described. The applications of similar technique combined with machine learning methods in DM diagnostics using the profile of DM-associated volatile molecular biomarkers in exhaled air or "pattern-recognition" approach are discussed.

摘要

本综述旨在分析通过检测呼气中挥发性分子生物标志物来进行非侵入性诊断和监测糖尿病(DM)及其相关并发症的能力。文中考虑了 DM 患者体内的特定生化反应及其与呼吸中挥发性分子生物标志物的关联。描述了包括紫外、红外和太赫兹光谱在内的光学光谱方法在 DM 相关挥发性分子生物标志物测量中的应用。讨论了将类似技术与机器学习方法结合使用,通过分析呼气中与 DM 相关的挥发性分子生物标志物谱或“模式识别”方法进行 DM 诊断的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验