Devrome Martijn, Van Laere Koen, Koole Michel
Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.
Division of Nuclear Medicine, Universitair Ziekenhuis (UZ) Leuven, Leuven, Belgium.
Front Neuroimaging. 2023 Aug 14;2:1115965. doi: 10.3389/fnimg.2023.1115965. eCollection 2023.
With the increasing success of mapping brain networks and availability of multiple MR- and PET-based connectivity measures, the need for novel methodologies to unravel the structure and function of the brain at multiple spatial and temporal scales is emerging. Therefore, in this work, we used hybrid PET-MR data of healthy volunteers ( = 67) to identify multiplex core nodes in the human brain. First, monoplex networks of structural, functional and metabolic connectivity were constructed, and consequently combined into a multiplex SC-FC-MC network by linking the same nodes categorically across layers. Taking into account the multiplex nature using a tensorial approach, we identified a set of core nodes in this multiplex network based on a combination of eigentensor centrality and overlapping degree. We introduced a coreness coefficient, which mitigates the effect of modeling parameters to obtain robust results. The proposed methodology was applied onto young and elderly healthy volunteers, where differences observed in the monoplex networks persisted in the multiplex as well. The multiplex core showed a decreased contribution to the default mode and salience network, while an increased contribution to the dorsal attention and somatosensory network was observed in the elderly population. Moreover, a clear distinction in eigentensor centrality was found between young and elderly healthy volunteers.
随着脑网络映射的日益成功以及多种基于磁共振成像(MR)和正电子发射断层扫描(PET)的连接性测量方法的出现,对于在多个空间和时间尺度上揭示大脑结构和功能的新方法的需求正在显现。因此,在这项工作中,我们使用了健康志愿者(n = 67)的PET-MR混合数据来识别人脑中的多重核心节点。首先,构建了结构、功能和代谢连接性的单重网络,然后通过跨层对相同节点进行分类链接,将其组合成一个多重结构-功能-代谢(SC-FC-MC)网络。考虑到使用张量方法的多重性质,我们基于特征张量中心性和重叠度的组合在这个多重网络中识别出了一组核心节点。我们引入了一个核心系数,该系数减轻了建模参数的影响以获得稳健的结果。所提出的方法应用于年轻和老年健康志愿者,在单重网络中观察到的差异在多重网络中也持续存在。多重核心对默认模式网络和突显网络的贡献减少,而在老年人群中观察到对背侧注意网络和体感网络的贡献增加。此外,在年轻和老年健康志愿者之间发现了特征张量中心性的明显差异。