Smith Nathan, Dasgupta Medhanjali, Wych David C, Dolamore Cole, Sierra Raymond G, Lisova Stella, Marchany-Rivera Darya, Cohen Aina E, Boutet Sébastien, Hunter Mark S, Kupitz Christopher, Poitevin Frédéric, Moss Frank R, Brewster Aaron S, Sauter Nicholas K, Young Iris D, Wolff Alexander M, Tiwari Virendra K, Kumar Nivesh, Berkowitz David B, Hadt Ryan G, Thompson Michael C, Follmer Alec H, Wall Michael E, Wilson Mark A
Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588.
Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 875405.
bioRxiv. 2023 Aug 16:2023.08.15.553460. doi: 10.1101/2023.08.15.553460.
Enzymes populate ensembles of structures with intrinsically different catalytic proficiencies that are difficult to experimentally characterize. We use time-resolved mix-and-inject serial crystallography (MISC) at an X-ray free electron laser (XFEL) to observe catalysis in a designed mutant (G150T) isocyanide hydratase (ICH) enzyme that enhances sampling of important minor conformations. The active site exists in a mixture of conformations and formation of the thioimidate catalytic intermediate selects for catalytically competent substates. A prior proposal for active site cysteine charge-coupled conformational changes in ICH is validated by determining structures of the enzyme over a range of pH values. A combination of large molecular dynamics simulations of the enzyme in crystallo and time-resolved electron density maps shows that ionization of the general acid Asp17 during catalysis causes additional conformational changes that propagate across the dimer interface, connecting the two active sites. These ionization-linked changes in the ICH conformational ensemble permit water to enter the active site in a location that is poised for intermediate hydrolysis. ICH exhibits a tight coupling between ionization of active site residues and catalysis-activated protein motions, exemplifying a mechanism of electrostatic control of enzyme dynamics.
酶存在于具有本质上不同催化能力的结构集合中,这些催化能力难以通过实验进行表征。我们在X射线自由电子激光(XFEL)上使用时间分辨混合注入串行晶体学(MISC)来观察一种设计的突变体(G150T)异腈水合酶(ICH)中的催化作用,该突变体增强了重要次要构象的采样。活性位点存在于构象的混合物中,硫代亚氨酸酯催化中间体的形成选择了具有催化活性的亚状态。通过确定该酶在一系列pH值范围内的结构,验证了之前关于ICH中活性位点半胱氨酸电荷耦合构象变化的提议。晶体中酶的大分子动力学模拟和时间分辨电子密度图的结合表明,催化过程中一般酸Asp17的电离会导致额外的构象变化,这些变化会穿过二聚体界面传播,连接两个活性位点。ICH构象集合中这些与电离相关的变化使水能够在一个准备好进行中间体水解的位置进入活性位点。ICH在活性位点残基的电离和催化激活的蛋白质运动之间表现出紧密的耦合,例证了一种对酶动力学进行静电控制的机制。