Strutt James P B, Natarajan Meenubharathi, Lee Elizabeth, Teo Denise Bei Lin, Sin Wei-Xiang, Cheung Ka-Wai, Chew Marvin, Thazin Khaing, Barone Paul W, Wolfrum Jacqueline M, Williams Rohan B H, Rice Scott A, Springs Stacy L
Singapore-MIT Alliance for Research and Technology , Singapore, Singapore.
MIT Center for Biomedical Innovation, Massachusetts Institute of Technology , Boston, USA.
Microbiol Spectr. 2023 Aug 30;11(5):e0135023. doi: 10.1128/spectrum.01350-23.
Assuring that cell therapy products are safe before releasing them for use in patients is critical. Currently, compendial sterility testing for bacteria and fungi can take 7-14 days. The goal of this work was to develop a rapid untargeted approach for the sensitive detection of microbial contaminants at low abundance from low volume samples during the manufacturing process of cell therapies. We developed a long-read sequencing methodology using Oxford Nanopore Technologies MinION platform with 16S and 18S amplicon sequencing to detect USP <71> organisms and other microbial species. Reads are classified metagenomically to predict the microbial species. We used an extreme gradient boosting machine learning algorithm (XGBoost) to first assess if a sample is contaminated, and second, determine whether the predicted contaminant is correctly classified or misclassified. The model was used to make a final decision on the sterility status of the input sample. An optimized experimental and bioinformatics pipeline starting from spiked species through to sequenced reads allowed for the detection of microbial samples at 10 colony-forming units (CFU)/mL using metagenomic classification. Machine learning can be coupled with long-read sequencing to detect and identify sample sterility status and microbial species present in T-cell cultures, including the USP <71> organisms to 10 CFU/mL. IMPORTANCE This research presents a novel method for rapidly and accurately detecting microbial contaminants in cell therapy products, which is essential for ensuring patient safety. Traditional testing methods are time-consuming, taking 7-14 days, while our approach can significantly reduce this time. By combining advanced long-read nanopore sequencing techniques and machine learning, we can effectively identify the presence and types of microbial contaminants at low abundance levels. This breakthrough has the potential to improve the safety and efficiency of cell therapy manufacturing, leading to better patient outcomes and a more streamlined production process.
确保细胞治疗产品在投入患者使用前的安全性至关重要。目前,针对细菌和真菌的药典无菌检测可能需要7至14天。这项工作的目标是开发一种快速非靶向方法,用于在细胞治疗制造过程中从低体积样本中灵敏检测低丰度的微生物污染物。我们开发了一种长读长测序方法,使用牛津纳米孔技术公司的MinION平台,通过16S和18S扩增子测序来检测美国药典<71>规定的微生物及其他微生物种类。读取的序列通过宏基因组学进行分类,以预测微生物种类。我们使用极端梯度提升机器学习算法(XGBoost),首先评估样本是否被污染,其次确定预测的污染物是否被正确分类或错误分类。该模型用于对输入样本的无菌状态做出最终判定。从加标物种到测序读取的优化实验和生物信息学流程,能够使用宏基因组分类法检测出浓度低至10个菌落形成单位(CFU)/毫升的微生物样本。机器学习可以与长读长测序相结合,以检测和识别T细胞培养物中的样本无菌状态及存在的微生物种类,包括低至10 CFU/毫升的美国药典<71>规定的微生物。重要性 本研究提出了一种快速准确检测细胞治疗产品中微生物污染物的新方法,这对于确保患者安全至关重要。传统检测方法耗时较长,需要7至14天,而我们的方法可以显著缩短这一时间。通过结合先进的长读长纳米孔测序技术和机器学习,我们能够有效识别低丰度水平下微生物污染物的存在及其类型。这一突破有可能提高细胞治疗制造的安全性和效率,带来更好的患者治疗效果以及更简化的生产流程。