Yaghmazadeh Omid, Schoenhardt Seth, Sarabandi Arya, Sabet Ali, Sabet Kazem, Safari Fatemeh, Alon Leeor, Buzsáki György
Neuroscience Institute, School of Medicine, New York University, New York, NY, 10016, USA.
EMAG Technologies Inc., 775 Technology Dr., Ann Arbor, MI, 48108, USA.
Biosens Bioelectron X. 2023 Sep;14. doi: 10.1016/j.biosx.2023.100328. Epub 2023 Mar 11.
With the development of novel technologies, radio frequency (RF) energy exposure is expanding at various wavelengths and power levels. These developments necessitate updated approaches of RF measurements in complex environments, particularly in live biological tissue. Accurate dosimetry of the absorbed RF electric fields (E-Fields) by the live tissue is the keystone of environmental health considerations for this type of ever-growing non-ionizing radiation energy. In this study, we introduce a technique for direct in-vivo measurement of electric fields in living tissue. Proof of principle in-vivo electric field measurements were conducted in rodent brains using Bismuth Silicon Oxide (BSO) crystals exposed to varying levels of RF energy. Electric field measurements were calibrated and verified using in-vivo temperature measurements using optical temperature fibers alongside electromagnetic field simulations of a transverse electromagnetic (TEM) cell.
随着新技术的发展,射频(RF)能量暴露在各种波长和功率水平上不断扩大。这些发展需要在复杂环境中,特别是在活体生物组织中采用更新的射频测量方法。对活体组织吸收的射频电场(E场)进行准确的剂量测定是这类不断增长的非电离辐射能量环境健康考量的关键。在本研究中,我们介绍了一种在活体组织中直接测量电场的技术。使用暴露于不同水平射频能量的铋硅氧化物(BSO)晶体在啮齿动物大脑中进行了体内电场测量的原理验证。电场测量通过使用光学温度纤维进行的体内温度测量以及横向电磁(TEM)细胞的电磁场模拟进行校准和验证。