Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy.
Istituti Clinici Scientifici Maugeri IRCCS, 21049, Tradate, VA, Italy.
Eur Spine J. 2023 Nov;32(11):3836-3845. doi: 10.1007/s00586-023-07892-1. Epub 2023 Aug 31.
The study aims to assess if the angle of trunk rotation (ATR) in combination with other readily measurable clinical parameters allows for effective non-invasive scoliosis screening.
We analysed 10,813 patients (4-18 years old) who underwent clinical and radiological evaluation for scoliosis in a tertiary clinic specialised in spinal deformities. We considered as predictors ATR, Prominence (mm), visible asymmetry of the waist, scapulae and shoulders, familiarity, sex, BMI, age, menarche, and localisation of the curve. We implemented a Logistic Regression model to classify the Cobb angle of the major curve according to thresholds of 15, 20, 25, 30, and 40 degrees, by randomly splitting the dataset into 80-20% for training and testing, respectively.
The model showed accuracies of 74, 81, 79, 79, and 84% for 15-, 20-, 25-, 30- and 40-degrees thresholds, respectively. For all the thresholds ATR, Prominence, and visible asymmetry of the waist were the top five most important variables for the prediction. Samples that were wrongly classified as negatives had always statistically significant (p ≪ 0.01) lower values of ATR and Prominence. This confirmed that these two parameters were very important for the correct classification of the Cobb angle. The model showed better performances than using the 5 and 7 degrees ATR thresholds to prescribe a radiological examination.
Machine-learning-based classification models have the potential to effectively improve the non-invasive screening for AIS. The results of the study constitute the basis for the development of easy-to-use tools enabling physicians to decide whether to prescribe radiographic imaging.
本研究旨在评估躯干旋转角度(ATR)与其他易于测量的临床参数相结合是否可用于有效进行非侵入性脊柱侧凸筛查。
我们分析了在一家专门治疗脊柱畸形的三级诊所接受脊柱侧凸临床和影像学评估的 10813 名患者(4-18 岁)。我们将 ATR、突出度(mm)、腰部、肩胛和肩部的可见不对称、熟悉程度、性别、BMI、年龄、初潮和曲线位置视为预测指标。我们实施了逻辑回归模型,通过将数据集随机分为 80-20%用于训练和测试,根据 15、20、25、30 和 40 度的阈值对主要曲线的 Cobb 角进行分类。
该模型对 15、20、25、30 和 40 度阈值的准确率分别为 74%、81%、79%、79%和 84%。对于所有阈值,ATR、突出度和腰部可见不对称性均为预测的前五个最重要变量。被错误分类为阴性的样本的 ATR 和突出度始终具有统计学意义(p ≪ 0.01)较低,这证实了这两个参数对于 Cobb 角的正确分类非常重要。该模型的表现优于使用 5 和 7 度 ATR 阈值来规定进行影像学检查。
基于机器学习的分类模型有可能有效改善 AIS 的非侵入性筛查。该研究的结果为开发易于使用的工具奠定了基础,使医生能够决定是否开具放射影像学检查。