Suppr超能文献

自我导向的人类和机器学习。

Self-orienting in human and machine learning.

机构信息

Marketing Unit, Harvard Business School, Boston, MA, USA.

Department of Computer Engineering, Bilkent University, Ankara, Turkey.

出版信息

Nat Hum Behav. 2023 Dec;7(12):2126-2139. doi: 10.1038/s41562-023-01696-5. Epub 2023 Aug 31.

Abstract

A current proposal for a computational notion of self is a representation of one's body in a specific time and place, which includes the recognition of that representation as the agent. This turns self-representation into a process of self-orientation, a challenging computational problem for any human-like agent. Here, to examine this process, we created several 'self-finding' tasks based on simple video games, in which players (N = 124) had to identify themselves out of a set of candidates in order to play effectively. Quantitative and qualitative testing showed that human players are nearly optimal at self-orienting. In contrast, well-known deep reinforcement learning algorithms, which excel at learning much more complex video games, are far from optimal. We suggest that self-orienting allows humans to flexibly navigate new settings.

摘要

目前,计算自我概念的一个提议是在特定时间和地点对一个人的身体的表示,其中包括将该表示识别为主体。这将自我表示转化为自我定位的过程,对于任何类似人类的主体来说,这都是一个具有挑战性的计算问题。在这里,为了研究这个过程,我们基于简单的视频游戏创建了几个“自我发现”任务,在这些任务中,玩家(N=124)必须从一组候选人中识别出自己,以便有效地进行游戏。定量和定性测试表明,人类玩家在自我定位方面几乎是最优的。相比之下,在学习更复杂的视频游戏方面表现出色的著名深度强化学习算法远非最优。我们认为,自我定位使人类能够灵活地在新环境中导航。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验