Suppr超能文献

利用机器学习从电子健康记录中检测肌肉减少症。

Using machine learning to detect sarcopenia from electronic health records.

作者信息

Luo Xiao, Ding Haoran, Broyles Andrea, Warden Stuart J, Moorthi Ranjani N, Imel Erik A

机构信息

School of Engineering and Technology, Indiana University Purdue University at Indianapolis, Indianapolis, IN, USA.

Regenstrief Institute, Indianapolis, IN, USA.

出版信息

Digit Health. 2023 Aug 29;9:20552076231197098. doi: 10.1177/20552076231197098. eCollection 2023 Jan-Dec.

Abstract

INTRODUCTION

Sarcopenia (low muscle mass and strength) causes dysmobility and loss of independence. Sarcopenia is often not directly coded or described in electronic health records (EHR). The objective was to improve sarcopenia detection using structured data from EHR.

METHODS

Adults undergoing musculoskeletal testing (December 2017-March 2020) were classified as meeting sarcopenia thresholds for 0 (controls), ≥1 (Sarcopenia-1), or ≥2 (Sarcopenia-2) tests. Electronic health record diagnoses, medications, and laboratory testing were extracted from the Indiana Network for Patient Care. Five machine learning models were applied to EHR data for predicting sarcopenia.

RESULTS

Of 1304 participants, 1055 were controls, 249 met Sarcopenia-1 and 76 met Sarcopenia-2. Sarcopenic participants were older, with higher fat mass, Charlson Comorbidity Index, and more chronic diseases. All models performed better for Sarcopenia-2 than Sarcopenia-1. The top performing models for Sarcopenia-1 were Logistic Regression [area under the curve (AUC) 71.59 (95% confidence interval [CI], 71.51-71.66)] and Multi-Layer Perceptron [AUC 71.48 (95%CI, 71.00-71.97)]. The top performing models for Sarcopenia-2 were Logistic Regression [AUC 91.44 (95%CI, 91.28-91.60)] and Support Vector Machine [AUC 90.81 (95%CI, 88.41-93.20)]. For the best Logistic Regression Model, important sarcopenia predictors included diabetes mellitus, digestive system complaints, signs and symptoms involving the nervous, musculoskeletal and respiratory systems, metabolic disorders, and kidney or urinary tract disorders. Opioids, corticosteroids, and antihyperlipidemic drugs were also more common among sarcopenic participants.

CONCLUSIONS

Applying machine learning models, sarcopenia can be predicted from structured data in EHR, which may be developed through future studies to facilitate large-scale early detection and intervention in clinical populations.

摘要

引言

肌肉减少症(肌肉质量和力量低下)会导致行动不便和失去独立生活能力。肌肉减少症在电子健康记录(EHR)中通常没有直接编码或描述。目的是利用EHR中的结构化数据改善肌肉减少症的检测。

方法

对接受肌肉骨骼测试的成年人(2017年12月至2020年3月)进行分类,根据0项(对照组)、≥1项(肌肉减少症-1)或≥2项(肌肉减少症-2)测试结果判断是否达到肌肉减少症阈值。从印第安纳州患者护理网络中提取电子健康记录诊断、用药情况和实验室检测结果。将五种机器学习模型应用于EHR数据以预测肌肉减少症。

结果

在1304名参与者中,1055人为对照组,249人符合肌肉减少症-1标准,76人符合肌肉减少症-2标准。肌肉减少症患者年龄更大,脂肪量更高,Charlson合并症指数更高,慢性病更多。所有模型对肌肉减少症-2的预测效果均优于肌肉减少症-1。肌肉减少症-1预测效果最佳的模型是逻辑回归[曲线下面积(AUC)71.59(95%置信区间[CI],71.51 - 71.66)]和多层感知器[AUC 71.48(95%CI,71.00 - 71.97)]。肌肉减少症-2预测效果最佳的模型是逻辑回归[AUC 91.44(95%CI,91.28 - 91.60)]和支持向量机[AUC 90.81(95%CI,88.41 - 93.20)]。对于最佳逻辑回归模型,肌肉减少症的重要预测因素包括糖尿病、消化系统疾病、涉及神经、肌肉骨骼和呼吸系统的体征和症状、代谢紊乱以及肾脏或泌尿系统疾病。阿片类药物、皮质类固醇和抗高脂血症药物在肌肉减少症患者中也更为常见。

结论

应用机器学习模型,可以从EHR中的结构化数据预测肌肉减少症,未来研究可能会在此基础上进一步发展,以促进对临床人群的大规模早期检测和干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67ac/10467215/0f6e66c2a597/10.1177_20552076231197098-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验