Suppr超能文献

在确定北方森林生物多样性和碳的重要区域时数据不确定性的作用。

Role of data uncertainty when identifying important areas for biodiversity and carbon in boreal forests.

机构信息

Finnish Natural History Museum, University of Helsinki, (Pohjoinen Rautatiekatu 13), P.O. Box 17, 00014, Helsinki, Finland.

Department of Forest Science, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland.

出版信息

Ambio. 2023 Nov;52(11):1804-1818. doi: 10.1007/s13280-023-01908-2. Epub 2023 Sep 1.

Abstract

Forest conservation plays a central role in meeting national and international biodiversity and climate targets. Biodiversity and carbon values within forests are often estimated with models, introducing uncertainty to decision making on which forest stands to protect. Here, we explore how uncertainties in forest variable estimates affect modelled biodiversity and carbon patterns, and how this in turn introduces variability in the selection of new protected areas. We find that both biodiversity and carbon patterns were sensitive to alterations in forest attributes. Uncertainty in features that were rare and/or had dissimilar distributions with other features introduced most variation to conservation plans. The most critical data uncertainty also depended on what fraction of the landscape was being protected. Forests of highest conservation value were more robust to data uncertainties than forests of lesser conservation value. Identifying critical sources of model uncertainty helps to effectively reduce errors in conservation decisions.

摘要

森林保护在实现国家和国际生物多样性和气候目标方面发挥着核心作用。森林中的生物多样性和碳值通常通过模型进行估计,这给保护哪些森林的决策带来了不确定性。在这里,我们探讨了森林变量估计中的不确定性如何影响生物多样性和碳模式的建模,以及这反过来如何在新保护区的选择中引入可变性。我们发现,生物多样性和碳模式都对森林属性的变化敏感。在特征中,稀有和/或与其他特征分布不同的特征的不确定性给保护计划带来了最大的变化。最关键的数据不确定性也取决于正在保护的景观的比例。具有最高保护价值的森林比具有较低保护价值的森林对数据不确定性更具弹性。确定模型不确定性的关键来源有助于有效地减少保护决策中的错误。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e72/10562324/02e88e4f5e6f/13280_2023_1908_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验