Shanghai AI Laboratory, Shanghai, China.
Shanghai Jiaotong University, Shanghai, China.
Sci Data. 2023 Sep 2;10(1):574. doi: 10.1038/s41597-023-02460-0.
Foundation models, often pre-trained with large-scale data, have achieved paramount success in jump-starting various vision and language applications. Recent advances further enable adapting foundation models in downstream tasks efficiently using only a few training samples, e.g., in-context learning. Yet, the application of such learning paradigms in medical image analysis remains scarce due to the shortage of publicly accessible data and benchmarks. In this paper, we aim at approaches adapting the foundation models for medical image classification and present a novel dataset and benchmark for the evaluation, i.e., examining the overall performance of accommodating the large-scale foundation models downstream on a set of diverse real-world clinical tasks. We collect five sets of medical imaging data from multiple institutes targeting a variety of real-world clinical tasks (22,349 images in total), i.e., thoracic diseases screening in X-rays, pathological lesion tissue screening, lesion detection in endoscopy images, neonatal jaundice evaluation, and diabetic retinopathy grading. Results of multiple baseline methods are demonstrated using the proposed dataset from both accuracy and cost-effective perspectives.
基础模型通常使用大规模数据进行预训练,在启动各种视觉和语言应用方面取得了重大成功。最近的进展进一步使得仅使用少量训练样本就能有效地适应下游任务中的基础模型,例如,在上下文中学习。然而,由于缺乏公开可用的数据和基准,这种学习范式在医学图像分析中的应用仍然很少。在本文中,我们旨在研究适应医学图像分类的基础模型的方法,并提出了一个新的数据集和基准进行评估,即在一组多样化的实际临床任务上评估适应大规模基础模型的整体性能。我们从多个机构收集了五组医学成像数据,针对各种实际临床任务(总共 22349 张图像),即 X 射线中的胸部疾病筛查、病理病变组织筛查、内窥镜图像中的病变检测、新生儿黄疸评估和糖尿病视网膜病变分级。使用所提出的数据集,从准确性和成本效益的角度展示了多种基线方法的结果。