Zhang Yang, Roux Charles, Rouchaud Aymeric, Meddahi-Pellé Anne, Gueguen Virginie, Mangeney Claire, Sun Fan, Pavon-Djavid Graciela, Luo Yun
Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, F-75006, Paris, France.
Université Sorbonne Paris Nord, INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, 99 Av. Jean-Baptiste Clément, 93430, Villetaneuse, France.
Bioact Mater. 2023 Aug 26;31:333-354. doi: 10.1016/j.bioactmat.2023.07.024. eCollection 2024 Jan.
Fe-based materials have received more and more interests in recent years as candidates to fabricate bioresorbable stents due to their appropriate mechanical properties and biocompatibility. However, the low degradation rate of Fe is a serious limitation for such application. To overcome this critical issue, many efforts have been devoted to accelerate the corrosion rate of Fe-based stents, through the structural and surface modification of Fe matrix. As stents are implantable devices, the released corrosion products (Fe ions) in vessels may alter the metabolism, by generating reactive oxygen species (ROS), which might in turn impact the biosafety of Fe-based stents. These considerations emphasize the importance of combining knowledge in both materials and biological science for the development of efficient and safe Fe-based stents, although there are still only limited numbers of reviews regarding this interdisciplinary field. This review aims to provide a concise overview of the main strategies developed so far to design Fe-based stents with accelerated degradation, highlighting the fundamental mechanisms of corrosion and the methods to study them as well as the reported approaches to accelerate the corrosion rates. These approaches will be divided into four main sections, focusing on (i) increased active surface areas, (ii) tailored microstructures, (iii) creation of galvanic reactions (by alloying, ion implantation or surface coating of noble metals) and (iv) decreased local pH induced by degradable surface organic layers. Recent advances in the evaluation of the biocompatibility of the final materials and ongoing tests are also provided.
近年来,铁基材料因其具有合适的机械性能和生物相容性,作为制造生物可吸收支架的候选材料受到了越来越多的关注。然而,铁的低降解速率是此类应用的一个严重限制。为了克服这一关键问题,人们通过对铁基体进行结构和表面改性,致力于加快铁基支架的腐蚀速率。由于支架是可植入装置,血管中释放的腐蚀产物(铁离子)可能通过产生活性氧(ROS)改变新陈代谢,这反过来可能会影响铁基支架的生物安全性。这些考虑凸显了将材料科学和生物科学知识相结合对于开发高效、安全的铁基支架的重要性,尽管关于这个跨学科领域的综述仍然有限。本综述旨在简要概述目前为止为设计具有加速降解性能的铁基支架而开发的主要策略,强调腐蚀的基本机制以及研究这些机制的方法,以及报道的加速腐蚀速率的方法。这些方法将分为四个主要部分,重点关注:(i)增加活性表面积;(ii)定制微观结构;(iii)产生电偶反应(通过合金化、离子注入或贵金属表面涂层);(iv)可降解表面有机层引起的局部pH值降低。还介绍了最终材料生物相容性评估的最新进展以及正在进行的测试。