Suppr超能文献

人工智能在牙科全景片分析中的应用:系统评价综述。

Applications of artificial intelligence in the analysis of dental panoramic radiographs: an overview of systematic reviews.

机构信息

Institute of Public Health, Jagiellonian University Medical College, Skawińska, Poland.

Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza, Poland.

出版信息

Dentomaxillofac Radiol. 2023 Oct;52(7):20230284. doi: 10.1259/dmfr.20230284. Epub 2023 Sep 4.

Abstract

OBJECTIVES

This overview of systematic reviews aimed to establish the current state of knowledge on the suitability of artificial intelligence (AI) in dental panoramic radiograph analysis and illustrate its changes over time.

METHODS

Medical databases covered by the Association for Computing Machinery, Bielefeld Academic Search Engine, Google Scholar, and PubMed engines were searched. The risk of bias was assessed using ROBIS tool. Ultimately, 12 articles were qualified for the qualitative synthesis. The results were visualized with timelines, tables, and charts.

RESULTS

In the years 1988-2023, a significant development of information technologies for the analysis of DPRs was observed. The latest analyzed AI models achieve high accuracy in detecting caries (91.5%), osteoporosis (89.29%), maxillary sinusitis (87.5%), periodontal bone loss (93.09%), and teeth identification and numbering (93.67%). The detection of periapical lesions is also characterized by high sensitivity (99.95%) and specificity (92%). However, due to the small number of heterogeneous source studies synthesized in systematic reviews, the results of this overview should be interpreted with caution.

CONCLUSION

Currently, AI applications can significantly support dentists in dental panoramic radiograph analysis. As systematic reviews on AI become outdated quickly, their regular updating is recommended. PROSPERO registration number: CRD42023416048.

摘要

目的

本系统评价综述旨在确定人工智能(AI)在口腔全景放射分析中的适用性的现有知识状态,并说明其随时间的变化。

方法

检索了由计算机协会、比勒费尔德学术搜索引擎、谷歌学术和 PubMed 引擎涵盖的医学数据库。使用 ROBIS 工具评估偏倚风险。最终,有 12 篇文章符合定性综合的条件。结果通过时间线、表格和图表进行可视化。

结果

在 1988 年至 2023 年期间,观察到用于 DPR 分析的信息技术的显著发展。最新分析的 AI 模型在检测龋齿(91.5%)、骨质疏松症(89.29%)、上颌窦炎(87.5%)、牙周骨丢失(93.09%)和牙齿识别和编号(93.67%)方面具有很高的准确性。根尖病变的检测也具有很高的灵敏度(99.95%)和特异性(92%)。然而,由于系统评价中综合的异质源研究数量较少,因此应谨慎解释本综述的结果。

结论

目前,人工智能应用可以极大地支持牙医进行口腔全景放射分析。由于关于 AI 的系统评价很快就会过时,因此建议定期更新。PROSPERO 注册号:CRD42023416048。

相似文献

1
Applications of artificial intelligence in the analysis of dental panoramic radiographs: an overview of systematic reviews.
Dentomaxillofac Radiol. 2023 Oct;52(7):20230284. doi: 10.1259/dmfr.20230284. Epub 2023 Sep 4.
2
Artificial intelligence and dental panoramic radiographs: where are we now?
Evid Based Dent. 2024 Mar;25(1):43-44. doi: 10.1038/s41432-024-00978-9. Epub 2024 Jan 25.
3
Artificial Intelligence in Dental Caries Diagnosis and Detection: An Umbrella Review.
Clin Exp Dent Res. 2024 Aug;10(4):e70004. doi: 10.1002/cre2.70004.
4
Artificial intelligence in the diagnosis of dental diseases on panoramic radiographs: a preliminary study.
BMC Oral Health. 2023 Jun 3;23(1):358. doi: 10.1186/s12903-023-03027-6.
5
A comprehensive artificial intelligence framework for dental diagnosis and charting.
BMC Oral Health. 2022 Nov 9;22(1):480. doi: 10.1186/s12903-022-02514-6.
6
Artificial intelligence system for automatic deciduous tooth detection and numbering in panoramic radiographs.
Dentomaxillofac Radiol. 2021 Sep 1;50(6):20200172. doi: 10.1259/dmfr.20200172. Epub 2021 Mar 4.
7
Combining public datasets for automated tooth assessment in panoramic radiographs.
BMC Oral Health. 2024 Mar 26;24(1):387. doi: 10.1186/s12903-024-04129-5.
8
Panoramic radiography in dental diagnostics.
Swed Dent J Suppl. 1996;119:1-26.

引用本文的文献

1
U-net-based segmentation of foreign bodies and ghost images in panoramic radiographs.
Oral Radiol. 2025 Sep 17. doi: 10.1007/s11282-025-00862-x.
2
[Research progress on the diagnosis of ectodermal dysplasia and early oral prosthodontic treatment].
Hua Xi Kou Qiang Yi Xue Za Zhi. 2025 Aug 1;43(4):478-485. doi: 10.7518/hxkq.2025.2025173.
3
Decoding dental images: a comprehensive review of fractal analysis.
BDJ Open. 2025 Aug 21;11(1):74. doi: 10.1038/s41405-025-00365-1.
4
Dental practitioners versus artificial intelligence software in assessing alveolar bone loss using intraoral radiographs.
J Taibah Univ Med Sci. 2025 May 9;20(3):272-279. doi: 10.1016/j.jtumed.2025.04.001. eCollection 2025 Jun.
5
Applications of Artificial Intelligence (AI) for Diagnosis of Periodontal/Peri-Implant Diseases: A Narrative Review.
J Oral Rehabil. 2025 Aug;52(8):1193-1219. doi: 10.1111/joor.14045. Epub 2025 Jun 4.
6
Implications of artificial intelligence in periodontal treatment maintenance: a scoping review.
Front Oral Health. 2025 May 14;6:1561128. doi: 10.3389/froh.2025.1561128. eCollection 2025.
7
Pano-GAN: A Deep Generative Model for Panoramic Dental Radiographs.
J Imaging. 2025 Feb 2;11(2):41. doi: 10.3390/jimaging11020041.
10

本文引用的文献

1
Deep-learning performance in identifying and classifying dental implant systems from dental imaging: a systematic review and meta-analysis.
J Periodontal Implant Sci. 2024 Feb;54(1):3-12. doi: 10.5051/jpis.2300160008. Epub 2023 Mar 27.
2
Deep Learning for Detection of Periapical Radiolucent Lesions: A Systematic Review and Meta-analysis of Diagnostic Test Accuracy.
J Endod. 2023 Mar;49(3):248-261.e3. doi: 10.1016/j.joen.2022.12.007. Epub 2022 Dec 21.
4
Where Is the Artificial Intelligence Applied in Dentistry? Systematic Review and Literature Analysis.
Healthcare (Basel). 2022 Jul 8;10(7):1269. doi: 10.3390/healthcare10071269.
6
Search where you will find most: Comparing the disciplinary coverage of 56 bibliographic databases.
Scientometrics. 2022;127(5):2683-2745. doi: 10.1007/s11192-022-04289-7. Epub 2022 May 6.
7
Deep learning for caries detection: A systematic review.
J Dent. 2022 Jul;122:104115. doi: 10.1016/j.jdent.2022.104115. Epub 2022 Mar 30.
8
Artificial intelligence models for diagnosing gingivitis and periodontal disease: A systematic review.
J Prosthet Dent. 2023 Dec;130(6):816-824. doi: 10.1016/j.prosdent.2022.01.026. Epub 2022 Mar 14.
10
Application of deep learning in teeth identification tasks on panoramic radiographs.
Dentomaxillofac Radiol. 2022 Jul 1;51(5):20210504. doi: 10.1259/dmfr.20210504. Epub 2022 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验