Suppr超能文献

静息态功能连接图属性与未用药抑郁年轻患者的双相障碍风险相关:重性抑郁中的双相风险静息态功能连接。

Resting-state functional connectivity graph-properties correlate with bipolar disorder-risk in young medication-free depressed subjects: Bipolar-risk Resting State Functional Connectivity in Major Depression.

机构信息

Department of Psychiatry, Mass General Brigham, Harvard Medical School, United States.

Department of Psychological and Brain Sciences, University of Delaware, United States.

出版信息

J Affect Disord. 2022 Mar 15;301:52-59. doi: 10.1016/j.jad.2022.01.033. Epub 2022 Jan 7.

Abstract

BACKGROUND

Major Depressive Disorder (MDD) is frequently associated with risk factors for the development of Bipolar Disorder (BD). Using graph theory, we investigated brain network properties associated with BD risk factors in young MDD subjects.

METHODS

Resting-state fMRI was acquired from a large cohort (N= 104) of medication-free currently depressed participants (25 BD depression (BDD), 79 MDD). Lifetime mania symptom count (LMSC), current Young Mania Rating Scale (YMRS) score, and family history of mood disorders (FHMD) were examined as BD risk factors. Functional connectivity matrices from 280 regions of interests (ROIs) were first entered into the Network Based Statistic (NBS) toolbox to identify connections that varied with each risk factor. Next, within the correlated network for each risk factor, global and nodal graph properties for the top five linked nodes were calculated. Last, using identified graph properties, machine learning classification (MLC) between BDD, MDD with BD risk factors (MDD+), and without BD risk factors (MDD-) was conducted.

RESULTS

LMSC positively correlated with left lateral orbitofrontal cortex (LOFC) Communication Efficiency and with left middle temporal Eigenvector Centrality. Current YMRS score positively correlated with right amygdala Communication Efficiency and Closeness Centrality. FHMD positively correlated with right insula Eigenvector Centrality. Acceptable MLC accuracy was seen between BDD and MDD- using middle temporal Eigenvector Centrality, whereas moderate accuracy was seen between MDD+ and MDD- using OFC Communication Efficiency.

LIMITATION

Although participants were medication-free, they were not medication-naïve.

CONCLUSION

Functional connectome graph properties may serve as BD vulnerability biomarkers in young individuals with MDD.

摘要

背景

重度抑郁症(MDD)常与双相障碍(BD)发展的风险因素有关。我们使用图论研究了与年轻 MDD 受试者 BD 风险因素相关的脑网络特性。

方法

从一个大的药物免费的当前抑郁参与者队列(N=104)中采集静息状态 fMRI(25 个 BD 抑郁(BDD),79 个 MDD)。使用终生躁狂症状计数(LMSC)、当前 Young Mania Rating Scale(YMRS)评分和心境障碍家族史(FHMD)作为 BD 风险因素进行检查。首先将 280 个感兴趣区域(ROI)的功能连接矩阵输入网络基础统计(NBS)工具箱,以识别与每个风险因素相关的连接。然后,在每个风险因素的相关网络中,计算前五个连接节点的全局和节点图属性。最后,使用识别的图属性,在 BDD、有 BD 风险因素的 MDD(MDD+)和没有 BD 风险因素的 MDD(MDD-)之间进行机器学习分类(MLC)。

结果

LMSC 与左侧外侧眶额皮层(LOFC)的通讯效率和左侧颞中本征中心度呈正相关。当前 YMRS 评分与右侧杏仁核的通讯效率和接近中心度呈正相关。FHMD 与右侧岛叶本征中心度呈正相关。使用颞中本征中心度,BDD 和 MDD-之间的 MLC 准确率较高,而使用 OFC 通讯效率,MDD+和 MDD-之间的准确率中等。

局限性

尽管参与者没有服用药物,但他们并不是初次用药。

结论

功能连接组图属性可能是年轻 MDD 患者的 BD 易感性生物标志物。

相似文献

2

本文引用的文献

9
Early Intervention in Bipolar Disorder.双相障碍的早期干预。
Am J Psychiatry. 2018 May 1;175(5):411-426. doi: 10.1176/appi.ajp.2017.17090972. Epub 2018 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验