Suppr超能文献

二维/三维超声诊断儿科桡骨远端骨折:人类读者与人工智能的比较。

2D/3D ultrasound diagnosis of pediatric distal radius fractures by human readers vs artificial intelligence.

机构信息

Department of Radiology and Diagnostic Imaging, Walter C. Mackenzie Health Sciences Centre, University of Alberta, 8440-112 Street, Edmonton, AB, T6G 2B7, Canada.

Department of Family Medicine, University of Alberta, 5-16 University Terrace, Edmonton, AB, T6G 2T4, Canada.

出版信息

Sci Rep. 2023 Sep 4;13(1):14535. doi: 10.1038/s41598-023-41807-w.

Abstract

Wrist trauma is common in children and generally requires radiography for exclusion of fractures, subjecting children to radiation and long wait times in the emergency department. Ultrasound (US) has potential to be a safer, faster diagnostic tool. This study aimed to determine how reliably US could detect distal radius fractures in children, to contrast the accuracy of 2DUS to 3DUS, and to assess the utility of artificial intelligence for image interpretation. 127 children were scanned with 2DUS and 3DUS on the affected wrist. US scans were then read by 7 blinded human readers and an AI model. With radiographs used as the gold standard, expert human readers obtained a mean sensitivity of 0.97 and 0.98 for 2DUS and 3DUS respectively. The AI model sensitivity was 0.91 and 1.00 for 2DUS and 3DUS respectively. Study data suggests that 2DUS is comparable to 3DUS and AI diagnosis is comparable to human experts.

摘要

腕部创伤在儿童中很常见,通常需要进行放射检查以排除骨折,这会使儿童暴露在辐射下,并在急诊部门等待很长时间。超声(US)有可能成为一种更安全、更快速的诊断工具。本研究旨在确定 US 检测儿童桡骨远端骨折的可靠性,对比二维 US 和三维 US 的准确性,并评估人工智能在图像解读中的应用。127 名儿童的受影响手腕接受了二维 US 和三维 US 扫描。然后,由 7 名盲法人类读者和一个人工智能模型阅读 US 扫描结果。以 X 光片作为金标准,专家级人类读者对二维 US 和三维 US 的检测敏感度分别为 0.97 和 0.98。人工智能模型对二维 US 和三维 US 的检测敏感度分别为 0.91 和 1.00。研究数据表明,二维 US 与三维 US 相当,人工智能诊断与人类专家相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3dd2/10477281/d7fb4e7b1836/41598_2023_41807_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验