School of Computer Science and Engineering, Central South University, Changsha, 410008, Hunan, People's Republic of China.
Department of Psychology, University of Maryland, College Park, MD, 20742, USA.
Med Biol Eng Comput. 2023 Dec;61(12):3335-3344. doi: 10.1007/s11517-023-02915-x. Epub 2023 Sep 6.
Neuroimaging-based brain age prediction using deep learning is gaining popularity. However, few studies have attempted to leverage diffusion tensor imaging (DTI) to predict brain age. In this study, we proposed a 3D convolutional neural network model (3DCNN) and trained it on fractional anisotropy (FA) data from six publicly available datasets (n = 2406, age = 17-60) to estimate brain age. Implementing a two-loop nested cross-validation scheme with a tenfold cross-validation procedure, we achieved a robust prediction performance of a mean absolute error (MAE) of 2.785 and a correlation coefficient of 0.932. We also employed Grad-Cam++ to visualize the salient features of the proposed model. We identified a few highly salient fiber tracts, including the genu of corpus callosum and the left cerebellar peduncle, among others that play a pivotal role in our model. In sum, our model reliably predicted brain age and provided novel insight into age-related changes in brains' axonal structure.
基于神经影像学的大脑年龄预测正在兴起。然而,很少有研究尝试利用弥散张量成像(DTI)来预测大脑年龄。在这项研究中,我们提出了一种 3D 卷积神经网络模型(3DCNN),并在六个公开数据集(n = 2406,年龄为 17-60)的分数各向异性(FA)数据上进行训练,以估计大脑年龄。通过采用十折交叉验证程序的两重嵌套交叉验证方案,我们实现了稳健的预测性能,平均绝对误差(MAE)为 2.785,相关系数为 0.932。我们还使用 Grad-Cam++来可视化所提出模型的显著特征。我们确定了几个高度显著的纤维束,包括胼胝体膝部和左侧小脑脚等,这些纤维束在我们的模型中起着关键作用。总之,我们的模型可靠地预测了大脑年龄,并为大脑轴突结构的年龄相关性变化提供了新的见解。