Gupta Prashant, Rathi Priya, Gupta Rohit, Baldi Harsh, Coquerel Quentin, Debnath Avishek, Derami Hamed Gholami, Raman Baranidharan, Singamaneni Srikanth
Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
Nanoscale Horiz. 2023 Oct 23;8(11):1537-1555. doi: 10.1039/d3nh00258f.
Nanotechnology-enabled neuromodulation is a promising minimally-invasive tool in neuroscience and engineering for both fundamental studies and clinical applications. However, the nano-neuro interaction at different stages of maturation of a neural network and its implications for the nano-neuromodulation remain unclear. Here, we report heterogeneous to homogeneous transformation of neuromodulation in a progressively maturing neural network. Utilizing plasmonic-fluors as ultrabright fluorescent nanolabels, we reveal that negative surface charge of nanoparticles renders selective nano-neuro interaction with a strong correlation between the maturation stage of the individual neurons in the neural network and the density of the nanoparticles bound on the neurons. In stark contrast to homogeneous neuromodulation in a mature neural network reported so far, the maturation-dependent density of the nanoparticles bound to neurons in a developing neural network resulted in a heterogeneous optical neuromodulation (, simultaneous excitation and inhibition of neural network activity). This study advances our understanding of nano-neuro interactions and nano-neuromodulation with potential applications in minimally-invasive technologies for treating neuronal disorders in parts of the mammalian brain where neurogenesis persists throughout aging.
纳米技术介导的神经调节是神经科学和工程领域中一种很有前景的微创工具,可用于基础研究和临床应用。然而,神经网络成熟不同阶段的纳米-神经相互作用及其对纳米神经调节的影响仍不清楚。在此,我们报告了在逐渐成熟的神经网络中神经调节从异质性到同质性的转变。利用等离子体荧光团作为超亮荧光纳米标记,我们发现纳米颗粒的负表面电荷导致选择性纳米-神经相互作用,且神经网络中单个神经元的成熟阶段与结合在神经元上的纳米颗粒密度之间存在强相关性。与迄今报道的成熟神经网络中的均匀神经调节形成鲜明对比的是,发育中的神经网络中与神经元结合的纳米颗粒的成熟依赖性密度导致了异质性光学神经调节(即同时激发和抑制神经网络活动)。这项研究增进了我们对纳米-神经相互作用和纳米神经调节的理解,在治疗哺乳动物大脑中神经发生在整个衰老过程中持续存在的部分区域的神经元疾病的微创技术中具有潜在应用。